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CHAPTER 1

INTRODUCTION

In his article "Two Decades of Spacecraft Attitude Control"(l)*

Roberson expresses the judgment that attitude controller design has be-

come "conventional engineering practice". In some areas, like gyro-

scopic or field stabilization, this judgment is doubtless correct. One

exception is the design of controllers for flexible, lightly damped

spacecraft, where in including the flexibility effects, one must also

acknowledge the distributed nature of vibration energy. This implies

that finite dimension spacecraft models, including state space representa-

tions, will have errors which become large at higher frequencies. The

control of distributed parameter systems is not a new area. Aircraft

and missile structural effects have been successfully dealt with in the

past. Notch filters and/or gain stabilization were used, depending on

the bandwidth and the frequency spectrum. Difficulties arise in the

spacecraft context for the following reasons.

(1) The system is multivariable and too large in scale for

a full order controller to be feasible.

(2) Pointing accuracy and dynamic response requirements

demand a high bandwidth.

(3) Structural frequencies are extremely low.

*Superscript numerals refer to similarly numbered items in the List of

References.



(4) Damping ratios are no larger than several percent of

critical damping.

(5) The spectrum of modes which must be controlled may overlap

the spectrum of modes which need not be controlled.

Noting these spacecraft characteristics, Croopnick (2 ) in A Survey of

Automatic Control Techniques for Large Space Structures, states: "It is

nontrivial to design a robust controller for a distributed parameter

system with modeling errors and parameter variations, which simultan-

eously guarantees stability and meets performance requirements."

Classical techniques are powerful enough to address the flexible

spacecraft issues. Successful controllers have been designed and de-

ployed; a current example is the Galileo spacecraft, where four struc-

tural modes were within the stator control bandwidth. These controllers,

however, are generally single-input/single-output. For multivariable

systems, particularly of high-dimension, state space techniques are in-

creasingly attractive. Unfortunately, current modern control approaches,

including pole placement and LQG regulators, are very sensitive to plant/
(3) (4)anoteshv

model mismatch. In applications, Harris , Ginter ,and others have

demonstrated that instability can occur even for simple systems, if

truncated structural representations are used. Alternate approaches have

been suggested, as will be detailed below, but in all of them, stability,

robustness, and model-sensitivity issues exist.

The intent of the research discussed in this thesis is to demon-

strate a control architecture which is specifically applicable to flexible,

lightly damped satellites. Knowledge of the satellite structural response

characteristics, and insights from linear algebra and singular perturba-

tion theory are exploited to derive a reduced-order controller that is

stable and which meets dynamic performance requirements.

To motivate and provide a context for the presentation of specific

thesis results, this introduction starts with a general discussion of

flexible spacecraft structural characteristics and control requirements.

9



This is followed by a survey of available control design theories, and9 a discussion of the drawbacks of these theories in a flexible space-

craft context. The thesis results are then outlined.

1.1 Flexible Spacecraft Response Characteristics

The development of the Space Transportation System (STS) will

have a significant effect on future generations of spacecraft. One

can envision that two distinct classes of vehicles will result. Clearly,

there will be large structures erected in space to serve as antennas,

manufacturing or research platforms, or solar power collectors. Such

structures will, by nature, be multiple-input/multiple-output distributed

parameter systems characterized by low natural frequencies and little

damping. Control requirements will consist of slewing or station keep-

ing commands, control of vibration in the presence of disturbances,

and control of those modes which significantly affect shape. A second

class of vehicles is also consistent with the STS capability and future

missions. Such vehicles will be much smaller and may consist of a rigid

central portion and flexible appendages to mount sensors, solar panels,

and communications devices. These satellites will share many of the

structural response characteristics of the large space structures and

may be more prone to two added complications: changing of configuration

with appendage movement, and a possibility of having noncollocated sen-

sors and activators.

1.1.1 Structural Modeling

The dynamics of flexible damped systems are typically described

by a partial differential equation in spatial variables and time. In

general, this equation is separable into ordinary differential equations

by the assumption

q[Y,t] = Y[Y]T[t] (1)

10



9 where

q = elastic deformation vector

Y = a set of continuous spatial variables such as x, y, z

Solutions are found in terms of an infinite semibounded set of complex

eigenvalues A.; the associated vector valued eigenfunctions i[Y], and

time functions i t]. The forced response at any point [x,y,z] is given

in terms of an infinite series

q[x,y,z,t] i[x,YZ] &It] (2)

i=l

where

2-

M = fl 0ij 2 P
v d

V

'= J[F • dS

S

Finite-element methods describe q[Y,t] with a finite number of points

En], and truncate the series description at each point after n terms.

This results in a set of second-order ordinary differential equations

in terms of physical translation and rotation, which can be diagonalized

and put into the form

x = Ax + Bu
(3)

S= C

11



The matrix A is block diagonal

A

A A[ 1 ]

The individual blocks may take the form

A. = 02 1 or [ , or [: :
W -2 iw ] i

where

A. = ai + j0i the complex eigenvalue of the mode

A = a - joi the conjugate ofi i i

2 2 2T
W. a. + 2 the natural frequency1 1 1

C = ai./w the damping ratio1 1 1

The B and C matrices depend on the mode shapes evaluated at the actuator

or sensor locations.

The derivation of Eq. (3) is presented in Appendix F. There are

two points of interest here. The first is that Eq. (3) introduces a

discrete representation of Y[Y], which, in fact, ignores the high-frequency

modes. The second point is that control systems commonly work in the

time or frequency domain, and therefore seek to control qfx,y... t] by

controlling the magnitude of i[t], i = l,.

12



1.1.2 Frequency Characteristics

The frequency spectrum (see Figure 1) for a continuous structure

is directly related to the semibounded infinite set of eigenvalues. In

this context, the following definitions can be made. 
(2)

DISTRIBUTED PARAMETER SYSTEM

FINITE ELEMENT REPRESENTATION--

EVALUATION MODEL -

DESIGN MODEL

CONTROLLED UNCONTROLLE5D iRESIDUAL UNMODELED
(xe) p(c ) (X r)N Nxum)

Figure 1. Frequency spectrum.

(1) Controlled modes, xc, are the modes of the design model

which are explicitly controlled in order to achieve system

performance requirements.

(2) Uncontrolled modes, x , are the modes of the design modeluc

which are included in the controller design process, but

are not explicitly controlled.

(3) Residual modes, x r, are those modes which appear in the

large dimensional finite-element model, but are excluded

from the design model.

(4) Unmodeled modes, x., are those modes which are assumed

to exist, yet remain unmodeled.

4
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(5) The evaluation model consists of the controlled modes, the

funcontrolled modes, and some subset of the residual modes.
The size of the subset is typically constrained by the

dimension of available computer analysis tools. It is

assumed that testing control alternatives against the evalu-

ation model will be representative of testing these alter-

natives against the actual distributed parameter plant.

(6) Observation spillover is that portion of the measurement

which is contaminated by modes (i.e., x uc, x, x um) not

explicitly controlled.

(7) Control spillover is that feedback control which excites
those modes (i.e., xuc xr, x um) not explicitly controlled.

Note that the above definitions do not restrict eigenvalue multiplicity,

mode frequency separation, or frequency interleaving of controlled, un-

controlled, and residual modes.

If a state space model of the system is used, then two states are

required to model the dynamics of each mode. For discussions in this

thesis the following designations are made.

(1) x states correspond to xc modes.

(2) x 2 states describe those x modes which are frequency-2 uc

interleaved with the x modes.
c

(3) x 3 and x 4 states are associated with the remaining xuc

modes. The distinction between x3 and x4 will be made

later in the text.

(4) x models the residual (x ) modes.

14



1.1.3 Control Requirements(
2 )

An attitude controller may be required to meet objectives in three

functional categories: pointing control, vibration control, and figure

or shape control.

Pointing control refers to the static and dynamic errors involved

in following system pointing commands. Traditional designs have focused

on controlling the rigid-body modes and use gain stabilization or an

alternate frequency separation technique to minimize system response at

frequencies above the control system bandwidth. For a flexible satellite,

the low natural frequencies imply that some of the vibration modes will

affect system pointing and, therefore, the dynamics of these modes must

also be controlled. Additionally, frequency separation techniques are

often invalid because of the low damping ratios and the lack of a de-

fined frequency separation.

Vibration control is implemented to damp the vibrational energy

in the structure. Sources of vibration excitation include the pointing

controller, internal mechanisms like vibrating or scanning sensors, and

external impulses. The spectrum of these disturbances is sketched in

Figure 2, and may include a broadband low-frequency component, narrowband

components at discrete higher frequencies, and a white noise representa-

tion of impulsive loads. Shape control implies maintaining a portion or

all of the structures contour close to a specified configuration. Here,

it is assumed that the shape reference is an equilibrium configuration,

and that shape control will require that certain modes be constrained.

0

FREQUENCY

Figure 2. Vibration disturbance spectrum.
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As noted previously, the pointing, vibration, and figure control

requirements may result in frequency interleaving of controlled, un-

controlled, and residual modes. The objective of flexible spacecraft

control designs is to meet these requirements, and the response times

associated with them, without increasing the dimension of the controller

unduly. Additionally, the controller must have good robustness properties,

be economical of flight computer resources, and be tolerant of external

disturbances.

1.2 Controller Approaches

The difficulties in flexible satellite control stem from three

sources. The first is that the plant is flexible, lightly damped, and

has distributed mass and stiffness. This implies that plant magnitude

drops off very slowly with frequency and that an accurate discrete rep-

resentation could require an infinite number of states. A second diffi-

culty is that design requirements dictate that the bandwidth contain some

of the structural modes, and the case where the controlled and the un-

controlled modes are frequency interleaved may exist. (see Figure 3).

Finally, the space structure can be expected to be a multiple input-

multiple output system.

CONTROLLED HIGH-FREQUENCY RESIDUALLOW-FREQUENCY RESIDUAL____

S2 30 ft1  it ~

10 20 30 40 50 60 70 80 90100 200

FREQUENCY (rad/s)

Figure 3. Controller approaches. (5)
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Classical designs, employing notch filters and gain stabilization,
(20)

are possible, and successful examples are deployed today. The

strongest deficiency of these techniques is their sensitivity to dimen-

sion. When the dimension of the input or the output becomes large,

implementation becomes difficult. Because of this, state space tech-

niques have been examined as an alternate design methodology. Two ap-

proaches have been taken. One course focuses on the optimal regulator

and trying to implement it. Difficulties arise here because of the

distributed nature of the plant. As another option, direct output

feedback techniques are being looked at. The challenge in applying out-

put feedback is simultaneously achieving stability, robustness, and the

capability to meet dynamic requirements.

1.2.1 The Optimal Regulator

The optimal state feedback regulator is attractive for a number

of reasons. It is an efficient technique for multivariable problems, it

guarantees a stable closed-loop system if well defined conditions are
(6)

met, it can meet dynamic response requirements, and it has impressive

gain and phase margins. (7 ) Moreover, it is simple to implement in the

sense that it requires only a set of constant gains.

An initial drawback to using a regulator is that it requires full-

state feedback. Extensions to theory have included the separation
(6)

theorem, which under appropriate conditions guarantees stability and

good dynamic performance even if a reconstructed or estimated state

is used in the feedback loop. In addition, Doyle and Stein (8) have

shown that full-state robustness properties can be retained if observer

gains are properly chosen.

A more serious drawback to use in spacecraft control design occurs

because the regulator theory, including the robustness theorems, assumes

an accurate plant model. States must be represented adequately, and all

important states must be modeled. Neglecting higher order states may be

justified if the plant is strongly damped, though this must be done care-

fully because, above the bandwidth, the regulator falls off only as 1w.

17
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In the flexible satellite case neglecting higher order states may not be
(3) (4)

possible. Harris, Ginter, and others have demonstrated that using

a truncated structural model in regulator design will produce instability

or undesirable dynamics. Current research in regulator application in-

cludes three approaches to reducing regulator sensitivity to unmodeled

modes; defining the region where neglecting the unmodeled modes is valid,

modifying the regulator to decrease its sensitivity, and estimating the

unmodeled modes by a set of error functions.

Research that rigorously defines the conditions where truncated

models are valid, is clearly of interest. Results are available in

terms of system eigenvalues [A matrix], and in terms of actuator/sensor

locations [B and C matrices]. Singular perturbation theory, which is

valid if the plant has identifiable slow and fast modes, will allow a

controller to be designed for the slow modes; and if the open-loop

system is stable, it will guarantee stability for the fast modes. (9)

The basic theorems in this area have been extended to the case where an
(10)

observer is used to reconstruct some of the slow modes. Investiga-

tions into applying singular perturbation control formulations to the

flexible spacecraft problem, (11,12) despite the fact that the slow/fast

condition was not strictly met, have produced nonrobust controllers. (12,13)

(14)
Balas represents an alternate set of conditions which also

allow a truncated controller. The flexible spacecraft model can be

diagrammed as shown in Figure 4, where the modeled dynamics contain both

controlled and uncontrolled modes. Note that there is not dynamic coupl-

ing between modes, a result of the block diagonal A matrix. If C5 = 0,

the poles of the residual dynamics will not be shifted, so if the open-

loop residual dynamics were stable the closed-loop residual dynamics will

also be stable. If B5 = 0, there will be no excitation of the residual

modes. To the extent that the control designer has control over the

configuration, B 5 and C5 can be minimized and valid designs implemented. (14)

18



m FORCE ACTUATORS FLEXIBLE SYSTEM P SENSORS

SCONTROLLERI A

4 ]j DYNAMICS 15

ACTIVE CONTROLLER
SBASED ON _

m  Bm Cm ,

MEASUREMENT
NOISE

Figure 4. Flexible spacecraft model.

(15)

Gupta has actively modified regulator theory to reduce the

sensitivity to modeling errors. He introduces frequency-dependent

weights in the cost function and obtains a greater than 1/w rolloff

outside the bandwidth, at the expense of adding dynamics in the feed-

back loop. The feasibility of this concept for application to spacecraft

has not yet been demonstrated.

As a third alternative, Skelton designs a reduced-order controller,

but accounts for the neglected modes with an orthogonal function approx-

imation. (16) In their assessment of this method, Joshi and Groom
(1 7 ) note

that it offers "no advantage in the example considered, although spillover

estimates appear to be acceptable."

19



1.2.2 Output Feedback

Application of the regulator to distributed parameter problems

is limited because of sensitivity to plant/model mismatch, particularly

in dimension. An alternative which is being explored is output feedback.

without feedback loop dynamics. Output feedback controller laws are of

the form

u = Ky (4)

where y is the system output. There is a body of theory available for

selecting the elements of the K matrix. If a finite plant model of

dimension n is used, and m actuators and p sensors are atailable, then

K can be chosen to place m + p - 1 closed-loop poles. If m + p - 1 > n,
(18)

then eigenvectors can also be selected. The applicability of these

techniques to spacecraft design is limited for the same reason as the

regulator (i.e., spillover). Because the controller interacts with

residual modes, definitive statements about closed-loop system stability

are not generally possible.

Although one cannot ensure stability in general, results are avail-

able for special forms of the matrix K. In particular, Canavin (19 ) estab-

lishes that if feedback consists only of velocity measurements, even if

limited in number, and each sensor output is fed back only to a co-

located actuator, then stability of the closed-loop system can be guaran-

teed. There is a restricted capability, however, to meet system dynamic

requirements, and the stability results are not strictly valid if actuator

or sensor dynamics are acknowledged.

1.2.3 Summary

State space techniques are attractive because they make the design

of controllers for multiple-sensor/multiple-actuator systems tractable.

However, when these techniques have been applied to the flexible-spacecraft

2
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problem, they have produced designs which are not totally satisfactory.

For purposes of this thesis, a satisfactory design meets four criteria:

(1) Insensitivity to the process which converts the distrib-

uted parameter structural description to a finite dimen-

sional controller design model.

(2) Insensitivity to parameter variations within the design

model.

(3) Acceptable closed-loop dynamics.

(4) Guaranteed stability.

The fundamental diffi-'ulty seems to be in satisfying the first of these

criteria.

1.3 Thesis Overview

1.3.1 Discussion of Results

The research detailed in this thesis develops a methodology for

designing flexible-spacecraft controllers. This methodology uses a

low-order regulator/observer as the key controller element, but represents

a departure from previous applications for two reasons.

(1) The controller input and output are constrained in the

spatial domain.

(2) Residual modes are explicitly accounted for in the

controller.

The philosophy that motivated these modifications is based on four

postulates:

(1) The fact that modes can be placed in categories (x c , xuc

x r) represents valuable information. One of the strengths,

of the classical control approach is that it permits modes

i
21



to be phase-stabilized, notch-filtered, or gain-stabilized

depending on mode characteristics. State space techniques

do not permit this flexibility.

(2) The spatial content of control inputs and observed outputs

is important. The focus of traditional state space

controller designs is in the time or frequency domain;

and spatial information is typically not fully exploited

or acknowledged. However, spatial concepts are of interest,

particularly in the case of flexible satellites. In the

time domain, a system input, f[t] = f 0 sin [wt], is
0

a narrowband input, while a discrete inpulse, f[t] =

f 0S[t - t 1, is wideband. Similarly, in the spatial do-o1

main, an input of the form F[X, t] = i[ ] f~t] is narrow-

band, and will (for a self-adjoint system) excite only the

ith mode. A point actuator is spatially wideband and will

excite all modes except those where K [Ya ] = 0 (ya is the

actuator location).

(3) A truncated controller design model that ignores higher

order modes is not asymptotically valid. The characteristic

values of the truncated dynamical matrix will not approach

the true eigenvalues even in the limit where neglected

frequencies become infinite. (21)

(4) A reduced-order controller is required. In the space-

craft environment, computer computation and memory re-

sources are limited, and while dynamics are allowed in

the feedback loop, it is desirable to keep controller

dimensions small.

A block diagram represenation of the proposed controller archi-
tecture is shown in Figure 5. Transformations T2 and T3 are introduced

in the feedback path and serve to constrain the spatial content of Y

and u. The term C4 A 4B 4 u in the observer estimate of the system

22
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B L CONTROLLED -1 ~MODES A1

COMMAND+
r(+) B2 SUPRSED

B3MODES C3

__ UNCONTROLLED

4 MODES A4  FIT,2 T3

" CONTROL LAW U

" OBSERVER x1  AlX 1 + Blu +GT3[yY]

_Y CX + C4 A 1 B4 u

Figure 5. Reduced-order controller.

output represents a dc correction for residual state effects. The opera-

tion of this controller is perhaps best described in the frequency domain

(see Figure 6). A reduced-order regulator (dimension x 1] ) is designed

to give the x states adequate dynamic response, but constrained to choose

control laws of the form u = T 2KxI . If T2 is chosen so that

BT 2  = 0

and (5)

B3T = 0

then, u will not spill over into x2 or x3. Similarly, the output residual

which drives the observer is constrained to be of the form GT3 [y - j]

23
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CONTROLLED MODES

OTHER MODES
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SPATIAL RESIDUAL GAIN

CONSTRAINTS CORRECTION STABILIZATION

Figure 6. System mode categories.
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where y is the observer estimate of the output. If T is chosen so that3

T3C = 0

and (6)

TC 3  = 0

then, the observation residual will not contain 2 2 or x, information.

If T2 and T3 are chosen to satisfy equations (5) and (6) then the spec-

tral content of the u to Z signal path exhibits an identifiable fre-

quency separation (see Figure 7). A subset (x 4 ) of the higher order

modes can then be acknowledged in the controller by a singular pertuba-

tion correction term.

SPECTRAL CONTENT PLOTS

cn

1 2 3 4 5 6 7 8 102 rad/s

u TO Y SIGNAL PATHS

il II I I liil U III 11111 III

Figure 7. Spectral content plots: System, u to y.
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For the class of problem addressed here, this correction term is shown

to be of a simple form: the observer estimate of state output is modified

by a dc approximation of x4 dynamics.

= c +CA-I B u (7)
1 1 4 44-

The term C 4A 41B is bounded even if the dimension of x4 is increased with

out limit. It represents the steady-state structural deflections of the

x modes at the sensor locations due to unit loads at the actuator lo-
y
cations. The x5 states model the residual modes. It is assumed here

that if the controller previously discussed is implemented, and the

dimensions of x3 and x4 are big enough, then the x5 states will be

gain-stabilized.

1.3.2 Specific Contents

The intent of this thesis is to theoretically justify and illustrate

the controller architecture which is discussed in the previous section.

To this end, five chapters and eight supporting appendices are presented:

Chapter 1 Introduction

Chapter 2 M2V2 Satellite Description

Chapter 3 Controller Alternatives

Chapter 4 Summary and Suggestions for

Future Research

Chapter 5 Conclusions

Appendices A Transform Methodology

B Effect of Filtering a Control Input

C Adaptive Transforms

D Poles and Zeros of Multivariable Systems

E Singular Perturbation Theory

F Equations of Motion

G Eigensystem Perturbation Theory

H Implementation Issues

26



This organization of information treats the controller problem

on two levels. The main body of the text investigates the system's

implications of alternate controller architectures. A representative

satellite design, the CSDL M2V2 spacecraft, is introduced in Chapter 2.

The state space structural response model of this system is used to help

fix ideas and to illustrate key technical points. Specifically, results

are presented in Chapter 3 which compare the performance of a full-order

optimal regulator with various reduced-order controller options. In

contrast to the text, the appendices present detailed theoretical devel-

opments; developments needed to motivate and justify the controller

designs of Chapter 3. Of particular interest are Appendix A, where it

is shown that satisfying Eq. (5) and (6) is equivalent to

(1) Placing zeros at the same locations in the complex

frequency plane as the poles of A2 and A3 for all t to

Y signal paths.

(2) Nulling control and observation spillover for x2 and x3

(3) Making x2 and x 3 unobservable and uncontrollable.

(4) Placing U in the row null space of and 7 in the

column null space of 
(C 2C 3].

and Appendix E, where the details of constructing an appropriate,

asymptotically correct, low-order dynamic control design model are pre-

sented.
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CHAPTER 2

M2V2 SPACECRAFT

This chapter summarizes the configuration and structural response

characteristics of the CSDL M2V2 spaceborne optical system. Controller

requirements are then discussed within this context. The M2V2 is a pre-
(22)

liminary prototype design due to Henderson. It is used in this thesis

to illustrate the implications of various controller designs. No attempt

is made to address the many implementation issues associated with actually

deploying a satellite of this class.

2.1 Configuration

The optical system under discussion here is a larger scale version

of the Space Telescope. It consists of two space-grade mirrors (a con-

cave primary and an convex secondary) in a Cassegrain configuration (see

Figure 8). The image reflects off the primary mirror onto the secondary,

where it is then directed to the focal plane. In the design used here,

key dimensions include

18 m base length

1.5 m secondary-mirror diameter

5.5 m primary-mirror diameter

The size of the secondary mirror represents a tradeoff between obscuration

and field of view.
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Figure 8. Cassegrain configuration.

The M2V2 satellite consists of the optics described above, a sup-

port structure, processing equipment, a power system, and a sensor/actuator

package. These components are discussed only to the degree necessary to

explain their interaction with the control system.

(1) The support structure is constructed of low-thermal-expansion

graphite-epoxy tubing, and consists of a rigid base and

a metering truss to hold the secondary mirror (see Figures

9 and 10).

(2) The processing equipment includes cooled focal plane

sensors, recorders, and communication devices. For pur-

poses of controller design, this equipment is modeled

as a wideband disturbance in the base section.
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Figure 9. Support structure with rigid base
and metering truss.
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Figure 10. Support structure: telescope and base sections

31



(3) The power system converts and stores solar energy for use

by mission equipment, The components of interest to the

controller are the two flexible solar panels which are

rigidly mounted to the base section.

(4) In general, a satellite sensor/actuator package provides

the 'control authority and the information necessary to

perform station-keeping, pointing, and vibration control

tasks. In this thesis, attention is limited to motions

about the center of mass. The specific sensors and

actuators that are used are summarized in Figure 11. Mea-

surements 14, 15, and 16 are local angle measurements

from an inertial system. The remaining measurements are

displacements from piezo-electric sensors.

Appendix F models the satellite structure, develops the equations

of motion, and discusses the dynamic response modes. Details of mass

distribution and member sizing are also given.

2.2 Structural Response Characteristics

The dynamic response of the M2V2 system can be characterized in

terms of eigenfrequencies and mode shapes. The details of this character-

ization are given in Appendix F. There are, however, some general comments

of interest here. Figure 12 gives the spectral distribution of the

satellite response. There is a dense distribution of modes with occasions

where the eigenvalue multiplicty reaches 4. This spectra is typical of

the distributed parameter system discussed in Chapter 1. Key points to

be noted include the following.

(1) There is no evident frequency separation between a set of

high- and low-frequency modes.

(2) When several modes have the same or nearly the saze natural

frequency it is very difficult to distinguish them in the

frequency domain. Spatial characteristics however, may

permit separation of effects (see Figure 13).
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29

223

ACTUATOR LOCATIONS SENSOR LOCATIONS

PIEZO ELECTRIC MEMBER ACTUATORS SENSOR NODE OJRECTION

ACTUATOR NODE 1 NODE 2 1-16 SENSORS & ACTUATORS COLOCATED

1 5 10 17 1 +x+y
2 51 84 18 21 +X +y
3 52 61 19 21 z
4 53 62 20 22 +x +y
5 54 63 21 22 z
6 64 71 22 23 +x +y
7 81 72 23 23 z
8 62 73 24 24 +x +y
9 63 74 24 24

10 6 41 26 25 +x +y
11 7 42 27 25 z
12 8 43 28 3 +x +y
13 9 44 29 26 +x +Y

30 26 z
CONTROL MOMENT GYROS 31 27 +x +y

ATAOAXS32 27 z
ACUAOR AXS33 28 +x +y

14 x 34 28 z
Is y 35 29 +x +y
1s z 36 29 z

37 30 +x +y

4_53_ _ 62 38 30 +

Figure 11. Summary of actuators and sensors.
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2.3 Performance Index and Control Requirements

The performance of the optical system is degraded if the base-

line geometric relationships are not maintained. In particular, the

following quantities are of interest.

(1) The change in baselength (z spacing between mirrors) which

affects the focus.

(2) The differential displacements between the mirrors in the

x and y directions, which affect the line of sight.

(3) The differential rotations of the mirrors around either

the x or the y axis, which affect the location of the

image on the focal plane.

These five quantities can be defined in modal coordinates; the

specific relationships are given in Table 1. The notation ... refers

to higher frequency modes which are not included in the truncated

discrete model. From these relationships a scalar cost function in

Table 1. Performance relationships in modal coordinates.

Focal length change (m)

Af = 0.01315 C11 -0.01207 422 +0.00239 C28 +0.00488 429 +

Line-of-Sight Deviations (m)

x = -0.001130 &7 +0.002036 412 +0.001956 C13 +0.005727

E23 -0.001142 426 +0.004592 C30 + ...

= -0.001127 47 +0.002047 412 -0.001934 413 +0.005733

423 -0.009312 E26 -0.004582 &30 +

Deviations of Mirrors from Parallel (rad)

0x = -0.019368 &20 +0.007237 &21 +

ey = 0.007265 F20 +0.019353 21 +
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terms of modal displacements can be constructed. This particular

approach is not taken in this thesis. An alternate philosophy is

adopted which focuses on the following three objectives.

(1) Achieving adequate rigid-body rotation response.

(2) Adding damping to performance-related modes to improve

disturbance suppression.

(3) Ensuring closed-loop stability.

These objectives translate into the following controller requirements.

(1) A rigid-body bandwidth of less than 1 radian/second.

(2) A 10 percent damping for modes 7, 11, 12, 13, 20, 21, 22.

(3) The isolation of modes 23, 26, 28, 29, 30 from controller

influences.

(4) Adequate stability margins.

Table 2 details the modes which are to be controlled and those

which are to be isolated from the controller. Both sets influence the

optical performance. The intent is to add damping to the first set to

improve time response and to reduce resonance amplification due to

disturbances from either the controller or from the processing equip-

ment. The second set of modes is of higher frequency (see Figure 14).

The time response of these modes is adequate, and it is likely that

they are above the bandwidth of the equipment disturbances. The potential

for being excited by the controller remains, however, and isolation from

control influences is desirable.

2.4 Summary

The focus of this thesis is on the design of controllers for

large-scale, lightly damped, multiple-input/multiple-output systems

where the stiffness and mass are distributed parameters. The M2V2
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Table 2. Controller requirements.

Controlled Modes (see Figure 14, sheets 1 and 2)

Mode Effect

4) Irigid-body

56 rotations

7 line of sight

11 focus

12 line of sight
137

20 mirror rotation
21

22 focus

Modes To Be Decoupled From Controller Actions (see Figure 14,

sheets 3 and 4)

Mode Effect

23 line of sight
26

28 } focus
29

30 line of sight
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optical satellite is a well characterized design which is representative

of this class of system. This chapter describes this satellite with the

express intent of using it to illustrate controller options in Chapter 3.

It is interesting to note, by way of a side comment, that while

the introduction makes the distinction between discrete and distributed

parameter systems, each of these concepts is an idealization. Real

structures will fall somewhere in between. The M2V2 has distributed

stiffness and mass, but there are also the following discretizing in-

fluences.

(1) Large concentrated optical and equipment masses.

(2) Low moment capacity joints.

(3) Members and components with individual frequencies which

are much higher than the truss frequencies.

(4) Stiff subunit structures like the base section.

The effect of these influences it to produce readily definable truss

and member modes. The point which is of particular interest here is that

the structural designer does have substantial control over the spectral

pattern of the system. Although this thesis does not address the subject,

there appears to be a potential for configuring the truss and sizing the

structural members so that significant frequency separation occurs between

high- and low-frequency modes.
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CHAPTER 3

CONTROLLER OPTIONS

The central contribution of this research is a controller archi-

tecture which is applicable to the pointing and vibration control of

flexible spacecraft. This architecture is a synthesis of three

technologies.

(1) Singular, memoryless transformations of multiple-path

signals (Appendix A).

(2) Asymptotic corrections (Appendix E).

(3) The optimal regulator/observer.

The resulting controller is of reduced order, and promises to provide

the dynamic performance of a full-order design for slight increases in

control cost. The architecture under discussion here was introduced and

justified on technical grounds in Chapter 1. The intent of this chapter

is to discuss the controller issues from an alternate departure point.

A representative flexible spacecraft design, the M2V2 optical system,

is used as a test-bed for various controller configurations. The parti-

cular focus is on exploring the benefits and penalties associated with

introducing output transforms, input transforms, and asymptotic correc-

tions to the observer. The configurations that are exhibited are, in

fact, point designs. Nevertheless, the controller characteristics which

are illustrated are interesting and should be more widely relevant.
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This chapter begins with a brief review of the problem statement.

Then, the discussion turns to the controller alternatives. The baseline

option is a full-state optimal regulator; all discussions of performance

and costs refer to this case.

3.1 Problem Statement

The plant of interest is the M2V2 satellite. A description is

given in Chapter 2, and equations of motion are developed in Appendix F.

It is a lightly damped [ = 0.05 flexible structure which supports an

optical measurement system. Optical performance criteria dictate the

controller requirements.

For purposes of this chapter, the dynamics of the M2V2 are modeled

with a 50-mode (100-state) state space model. Eleven of the 50 modes

are to be specifically controlled. This number includes three rigid-body

rotation modes, seven vibratory modes which impact optical performance,

and an additional mode, mode 10, which cannot be spatially distinguished

from mode 4 and thus needs to be controll in the frequency domain. The

states that describe the dynamics of these -ontrolled modes are desig-

nated x1  The states that are not specifically controlled fall into

four categories. Three of these categories, x2, 1x 3, and x4 are account-

ed for in the controller design, but not included in the performance

requirements. The final category x5 contains residual states that are

neglected by the controller design model. The dimensions of the state

subspaces are: dim [x I = 22, dim Ix 2 = 16, dim Ix 3 = 34, dim Ix4] = 16,

and dim [x 5] = 12. The frequency spectrum of the model, Figuie 15,

summarizes this data.

Sixteen control inputs are available. Three are orthogonal torques

from control moment gyros located in the base scction. The other 13 con-

trols are member actuators; 1 in the base section, and 12 in the upper

three sections of the metering truss. Specific locations are given in

Appendix F, Figure F-28.
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Figure 15. Frequency spectrum, evaluation model.

Thirty-eight sensors provide dynamic information. Sixteen of

these are colocated with the actuators. The remaining 22 provide

12 horizontal and 10 vertical displacement measurements along the

solar arrays (see Section F.9.4).

Control requirements dictate that the rigid-body time constant

be 1 radian/second or smaller, that the x modes be damped to 10 per-

cent, and that the set of modes {23, 26, 28, 29, 30} be isolated from

the effects of the controller.

3.2 The Optimal Regulator

An optimal regulator was designed to serve as the baseline con-

troller design. It was assumed that the M2V2 dynamic performance could
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be adequately modeled by a finite element based state space model which

acknowledged x1 , x2 , x3 , and x4. The order of this model is 88. This

section reviews regulator design methodology, presents a specific base-

line controller, and then discusses issues and concerns. Included in

this last area is the whole topic of discretization.

3.2.1 Regulator Theory

An optimal regulator for the 88-state plant consists of a control

law and an estimator.

u = Kx (9)

and

x Ax + Bu + G (y-Cx)

where

X 2  and x = 2

2E -3

The gain matrix K is given by

K = -R1 BTP (10)
2

where the matrix P satisfies the algebraic Riccati equation

0 TAP + PA +R - PBR1 BTP (11)
1 2
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The matrices R1 and R2 are weighting matrices associated with state

deviations and control effort in the quadratic cost index

j TR X+TR 2udt (2

to

If K is chosen to satisfy Eq. (10), then the cost index J will be
0

minimized. The cost associated with driving any state deviation x

to zero is given by

J = x (13)

For the problem at hand, characterized by a block diagonal A

matrix, and a performance index which accounts for only a subset of

x (namely Xl), the R2 , RI, PI, and K matrices have special forms.

(1) The R2 matrix is a diagonal 16x16 matrix which weights

control effort. Equal penalties are assessed for using

the member actuators, and these weights are numerically

10 times greater than the weights on the three outputs

of the CMG. The intent is to acknowledge the greater con-

trol authority of the CMG. The exact choice of weights is

not a central concern in this research.

(2) The R1 matrix is a diagonal 88x88 matrix, where 88 is the

dimension of x. However, only 22 of the states are weighted,

and R1 has the form

R 1  ) 1

0 }X 2R= 0 0 l(14)

0 4x
3
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R1 is 22x22, and is a diagonal matrix. The diagonal ele-

ments of R1 are not all equal. They have been chosen

iteratively to yield acceptable closed-loop pole place-

ments.

(3) The P matrix is also 88x88, and again has nonzero elements

only in the partition which is associated with x1 . It is

intuitive that states which are dynamically uncoupled

(block-diagonal A matrix), and not weighted, should have

no cost associated with them. To construct a rigorous proof

of this see Theorem 3.8 in Linear Optimal Control Systems. 
(6)

P has the form

0 1 X2

= 0} 2 (15)
0 I 2

P1 is 22x 22, and fully populated.

(4) The gain matrix K can also be partitioned.

K = L KI K2 K3 K4j (16)

Using Eq. (10) and (15), one obtains

-RIB I 0 0 0O (17)2 11

The elements of K2, K3, and K4 are all zero.

The specific values of R1 , R2 , P, and K for the design at hand

are given in Appendix H, where the method of solving Eq. (11) is also

discussed.
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Incorporating Eq. (17) into Eq. (9), the optimal control law

become s

u = Klx (18)

where x, is a partition of x and

x = Ax + Bu + Gy - Cx] (19)

Equation (13) is an asymptotic observer. The gain matrix G is 88x38. The

elements of G are chosen to give adequate closed-loop performance. In a

stochastic environment, where estimates of plant noise and measurement noise

are available, the matrix G should be the Kalman gain matrix. Alternately,

in a deterministic design, the elements of G can be chosen to place the

poles of the observer error states. This second methodology is used here.

The desired observer error pole locations represent a compromise

between two constraints.

(1) Cost. If the observer poles are faster than the closed-loop

system poles, then the incremental cost due to observer error

will be small. (6)

(2) Robustness. If full-state feedback is available, the regu-

lator supplies gain margins of 0.5 to -, and phase margins
(7)

of -60' to +600 for all feedback paths. With an observer

or a Kalman filter in the feedback loop, these margins are

degraded. However, the full-state margins are asymptotically

achieved as the observer poles approach the regulator band-

width. (8)

The actual mechanism which was used for placing the poles is the alpha-

shift technique (see Sesak (11) and Strunce ( 5 ) ) . This technique exploits

duality and chooses

G = (20)
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where Q satisfies

0 = Q + QAT + Vl QcTvlIcQ (21)

1 2v I1 and V 2 are weights on observer error states and on the use of measure-

ment information. The matrix A is given by

A = A + aI (22)

Use of Eq. (20), (21), and (22) guarantees that all poles of (A - GC]

will be to the left of the line s = --a in the complex frequency plane.

For designs in this chapter a = 6.0, and V1 and V2 are diagonal. The

elements of V2 were set equal to 1.0X10
- 7 , and elements of V1 were

iterated to achieve satisfactory pole locations.

If the control law given by Eq. (18) and (19) is implemented,

the closed-loop system can be described by Eq. (23).

A1 + BIK1 BIIK x B 1

x2 A2 B2K x2  B2

x3  A3  B3K x 3  B3

+ re 1 e -

e e
-2 -2l

•0 I A-GCe31e3

-3 -3 0

e e-4 -4

where 
(23)

e
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"-l1

x2

23

x
24

Y [C1  C 2  C 3  C 4  a a a a]

e 3

e -(23)
(Cont.)

The closed-loop system poles are the poles of the following

matrices.

[A1 + BIK

A 2, A3, and A4

[A- Gc]

If K and G are chosen by the methods described above, then these poles

will all have negative real parts, and the overall system will be stable.

3.2.2 Baseline Design

The optimal regulator is used as a standard against which other

controller architectures can be evaluated. The quantities of specific

interest are as follows.

(1) The Regulator Weights R1 and R 2 . Numerical values for R

and R2 are given in Appendix H. For purposes here, the

specific values are less important than the fact that each

subsequent controller option will use the same weightings.
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(2) The Cost Matrix P. Numerical values for the elements of P

are given in Table 3. Recall that the cost to null any
0 xOTpx

0

state deviation x is given by J = xT . In Table 3 the

costs are ordered to correspond to 11 displacements (modes 4,

5, 6, 7, 10, 11, 12, 13, 20, 21, 22), then 11 modal velocities.

(3) The Closed-Loop Poles. Figure 16 shows the open-loop loca-

tions of the A 1 poles. Under control action, these poles

move to locations shown in Figure 17. The poles of A 2 , A3 '

and A4 are not modified by the controller. The error poles
of the observer are given by det [sI - A + GC] = 0. The

matrix G was not calculated for the 88-state case for the

following reasons.

(a) Computer limitations precluded assessing a 166-state

closed-loop system.

(b) The cost matrix was assumed to be independent of the

observer.

(c) The closed-loop system poles are available in closed

form.

However, it is known that all the observer poles would be

to the left of s = -6.

Time histories of the closed-loop full-state feedback response to

a unit initial condition on each of the x states is shown in Figure 18.

Plots of the corresponding open-loop response are given in Figure 19. (An

oversight is that the solar mode 10 was not initialized as intended.)

3.2.3 Issues and Concerns

If an accurate plant model is available, optimal control theory

is a very attractive design technique. The resulting controller is a
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Table 3. Cost matrix P.
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cascade of steady-state regulator gains and a time-invariant asymptotic

observer. If the initial observer error is zero, the controller mini-

mizes the quadratic performance index

J = RlX + uT R dt (24)

to

and has good stability margins. The design process itself is well de-

fined, rigorous, noniterative in principle, and structured to treat the

multiple-actuators/multiple-sensor plant. Despite its attractiveness,

there are issues associated with implementing a regulator. This section

identifies these issues and discusses them in the context of the M2V2

design.

3.2.3.1 Design Model

Regulator theory requires a finite dimension state space model as

a departure point. There are two issues associated with constructing this

model; the issues of discretization, and of model dimension. The validity

of using a discrete model to represent a distributed parameter system is a

concern. There are only two cases where a finite model can be rigorously

justified.

(1) The zero spillover case where either B 5-the residual mode

input distribution matrix, o. C 5-the residual mode output

matrix is equal to zero.

(2) The case of high-frequency residual modes.

In the first case, a truncated structural model is valid, and

the controller will have the form

u = Kx

x= Ax + Bu + G[y - Cx (25)
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In the case of high-frequency residual modes, the dynamics of x5

may be neglected, and the x 5 modes treated as dc. The coupling between

controlled and residual modes is retained, but the dimension of the con-

troller is reduced. This approach is motivated by singular perturbation

theory (see Appendix E), and leads to a control law of the form

u = Kx

X = Ax + Bu +G( - y)

C = A+C Bu (26)

This controller design is similar to the case just shown, except the dc

effect of x 5 is subtracted from the system output before it drives the

observer.

Neither Eq. (25) nor (26) will be valid in the general flexible-

spacecraft case. Residual states are typically close in frequency to

the controller bandwidth, and are both excited and observed. As mentioned

in the introduction, the presence of residual modes greatly hinders the

application of regulator theory to flexible-spacecraft control.

Having acknowledged the difficulties associated with residual

modes and discretization, one also faces the problem of dimension. The

88-state model used in the Section 3.2.2 design is small from the struc-

tural point of view. It includes as an example only the first two axial

modes and the first two bending modes. On the other hand, from the con-

text of a spaceborne computer, it is very large. Theory demands that the

observer have the same dimension as the plant model. However, the com-

putational requirements associated with 88 coupled difference equations

are significant in a limited-computer-resources environment. This

practical consideration is a strong motive for reducing the order of

the controller. An additional motive is the asymmetry between the di-

mension of the gain matrix, 16x22, and the dimension of the observer,

88. An observer of dimension 22 would be attractive.
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3.2.3.2 Closed-Loop Performance

There are three performance requirements associated with the M2V2

controller design. Two of these requirements are directly reflected in

the performance index.

(1) The increase in damping ratio to 10 percent for modes 7,

11, 12, 13, 20, 21, 22.

(2) The time constant of 1 radian/second for the rigid-body

rotation modes 4, 5, 6.

As illustrated in Figure 17, these requirements are met. The third

requirement

(3) Isolation of modes 23, 26, 28, 29, and 30 from controller

action.

is not reflected in the performance index, and cannot be fulfilled by

the optimal regulator (see Figure 18). The problem is caused by the

term B3K 1 in Eq. (23), a control spillover term. From a fundamental

point of view, there is no mechanism in traditional regulator theory

for decoupling modes from control influence.

3.2.3.3 Use of Spatial Information

The discussion here brings up a philosophic issue, in contrast

to the implementation questions just presented. A structure can be

modeled by a separable partial differential equation in space and time;

both spatial and temperal characteristics are important. The regulator

is based in the time domain, and when applied to a flexible structure,

it controls modes by shaping the frequency content of the control signals.

The philosophic question concerns the merit in shaping control in the

spatial domain as well. It is hypothesized that a controller which blends

spatial and temporal information may be attractive for this problem.
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3.3 Alternate Control Architectures

Regulator theory provides a powerful methodology for the treatment

of multiple-sensor/multiple-actuator, large-scale problems. However, the

regulator designs are not completely satisfactory if the plant is a dis-

tributed parameter system like a spacecraft. As discussed in Section 3.2,

deficiencies fall into two categories.

(1) Deficiencies associated with plant/model mismatch.

(2) Deficiencies occurring even if an accurate plant model is

assumed.

This section begins by assuming that an accurate plant model exists.

Within this context, options are explored which reduce the dimension of the

controller and which allow some of the uncontrolled states to be isolated

from controller excitation. The plant/model mismatch is then acknowledged,

and the effects of residual modes are discussed.

3.3.1 Reduced-Order Observers

The baseline optimal control law has the form

u = Kx (27)

where xl is a partition ofx

x 8

-2 22 8
= l' ER 2 2 x, ER (28)

x3-3l

-4

and

x= Ax + Bu + G[y - Cx] (29)
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Equations (27) and (29) form the optimal controller. The intent of

this section is to replace the 88-state dynamic observer (Eq. (29)) with

an observer of lower order. There are two motivations for this. The

first is practical in nature: to reduce the real-time computational

burden. Propagating a 88-element state vector is expensive even on a

mainframe computer. Performing a similar calculation within the compu-

tational and memory constraints of flight-qualified hardware may not be

feasible. The second motivation is the asymmetry that exists between

the observer, which uses 88 states to estimate x1 x2 ' 3 , and x4 , and

the control law which only requires i (dimension 22). It would be

heuristically attractive to implement an observer of the same dimension

as x i

3.3.1.1 Alternate Designs

Three reduced-order observer designs are considered. The first

design has the form

1= A l + - + G - Cll (30)

G is picked using the method discussed in Section 3.2.1. The poles of

[A - C ] are given in Figure 20. This observer is of dimension 22.

One intuitive concern regarding the first observer design is that

the x and x 2 states are interleaved in frequency (see Figure 15). It is

heuristically difficult to neglect the x2 states. The second design,

therefore, includes the x 2 state dynamics in addition to the xi, and

has the form

[±1 [l 2]X2] + ["1flj + Gy- UClC2J [2S12(1
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This design is of dimension 38. It is inefficient because it outputs

unnecessary information [x 2], but it is easier to justify than the

previous design. The poles of

[ A ]- G[C 1 C2]

are g:.ven in Figure 21.

The third observer option relies on only x, dynamic information,

and has dimension 22. It is similar in structure to the first observer,

but instead of using the system output to drive the estimator, it uses

a singular transformation of the output. Specifically, an output trans-

form, T3 , is introduced, where T3 satisfies the following conditions

T3C1 0

T3C = 0

T3C3  0 (32)

The details of calculating T3 are discussed in Appendix H. Then, an

observer of the form

= A + u + GT3[Y - CV 1 l (33)

can be constructed. The gain matrix G is based on [Al, T3 C 1. The poles

of [AI - GT3 C I are given in Figure 22. The transform T3 affects the

dimension and orientation of the unobservable subspace. If Eq. (32)

is satisfied, then both x2 and x3 are unobservable. T3 depends explicitly

on spatial information. Recall that the columns of C are the mode shapes

evaluated at the sensor locations.
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3.3.1.2 Closed-Loop Assessment

The three candidate reduced-order observers have similar error

dynamics if evaluated against their design models. When evaluated

against a higher dimension plant model the similarity disappears. This

subsection presents the closed-loop performance. The evaluation plant

model consists of the x and x states, and 22 of the x states. This

model is dictated by a dimension constraint on available eigenvalue

routines. The plant model is kept constant for all three evaluations.

In addition, the same gain matrix (the optimal gains K ) are used.

Tables 4, 5, and 6 summarize the closed-loop transfer functions between

a slew command and a slew response for three observer candidates.

3.3.1.3 Discussion

The observer based on only x information is not satisfactory.

The observer poles and the unmodeled plant poles interact

I  A1 + BIK 1  0 0 B 1K 1

x2  B2K 1  A2  0 B2K1  x 2

x3  B3K 1  0 A 3  B3KI x3

_e 0- oC O G
L C2 GC3 1 1 -GC1 t

and the closed-loop system is unstable. This is a demonstration of the

adverse effects of spillover.

If the dimension of the observer design model is increased, and

the x2 dynamics are included, then the observer will estimate x 2 and

use this estimate to reduce observation spillover. Nevertheless, there

is still interaction between the observer poles and the unmodeled plant

poles
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Table 4. Closed-loop transfer characteristics, slew command to slew
response for observer 1 (sheet 1 of 2). (In this case the
evaluation model consists of the x1 ' x2 and states.)

--------------- UNIQUE POLES----------------

$-PLANE

NUMB8ER REAL IMAG DAMPING FREQUENCY

1 -1.015530
2 -1.007584
3 -6.814196
5 -7.453760 3.047229 9.256356E-01 8.052586E+00
6 -11.047015
7 -13.390049
9 -11.446556 7.825401 8.255953E-01 1.386836E+01

10 -21.405136

12 -18.791641 18.710480 7.086354E-01 2.651807E+01
14 -9.357993 Z2.301987 3.869218E-01 2.418575E+01
16 0.679920 24.189636 -2.809681E-02- 2.419919E 01

18 0.476190 23.614639 -2.016094E-02 2. 61943E+01
20 -19.227478 24.109737 6.235011E-01 3.05379:E01
22 -13.936120 36.655167 3.553773E-01 3.921500E 01
24 -10.019306 40.46ZO21 2.40362SE-01 4.1b6407E+01
26 -21.695465 36.450302 5.114639E-01 4.Z4!37E 01

28 -25.753845 33.239597 6.113947E-01 4.20S836E01
30 -2.532052 46.953949 5.334504E-02 4.702217E+01
32 -7.124103 137.467911 5.175430E-02 1.376524E+02
34 -6.972634 137.211C60 5.075137E-02 1.373881E+02
36 -7.953462 135.302078 5.741305E-02 1.335306E+02

38 -14.703921 147.527,67 9.917778E-02 1.4825SZE+02
40 -12.433351 148.072800 8.367336E-02 1.485939E+02
42 -25.039124 142.899231 1.725927E-01 1.450763E+02
44 -26.576904 141.79E431 1.842195E-01 1.442675E+02
46 -13.021539 259.915771 5.0036335-02 2.602417E+02
48 -15.169055 298.099609 5.082010E-02 2.924a54E+02
50 -15.083717 296.345459 5.083331E-02 2.9672c05+02
52 -16.141846 322.261C30 5.002663E-02 3.226650E+02
54 -18.708-39 373.757368 4.999231E-02 3.2Z53E.02
56 -18.916077 376.03;551 5.023991E-02 3.7t5:4 E+02
53 -22.890915 457.253545 4.99936CE-02 4.573311E+02

THE FOLLOWING POLES MATCHED ZEROS AND WERE ELIMINATED IN ABOVE LISTS

NUMBER REAL IMAGINARY

1 -1.0003605
3 -1.1766090 23.5027618
4 -32.5592194
6 -14.5011153 32.9516602
8 -5.9662685 37.1050110
10 -19.4964905 140.990448
12 4.6008e44 139,271133
14 -19.97407S3 215.519897
16 -18.2264557 218.800003
18 -13.5907698 268.270752

20 -14.9602709 298.845459
22 -15.7016667 305.726074
24 -15.4683567 310.1149q0
26 -18.7397308 375,975830
28 -18.6756439 372.778309
30 -19.7651672 394.5e0322
32 -20.4223973 408,166504
34 -22.2779388 444.873291
36 -22.4438934 448.315186
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Table 4. Closed-loop transfer characteristics, slew command
to slew response for observer 1 (sheet 2 of 2).

------------- UJIGUE ZEROS ----------------

1 -1.0129qz
3 -6.951283 3.413284 8.97625CE-01 7.744083E+00
4 -11.046655
6 -0.516855 8.206378 6.285793E-02 8.222638E 00
7 -13.390564
9 -7.476950 11.432682 5.473383E-01 1.366056E+01

10 -22.202a05
12 -3.5:3394 22.017761 1.612917E-01 2.230986E+01
14 -0.486787 23.537735 2.067671E-02 2.354277E+01
16 0.679912 24.189636 -2.809649E-02 2.419919E+01
18 -19.227661 24.109207 6.235135E-O1 3.0537592+01
20 -31.977722 19.621918 8.523321E-01 3.751791E+01
22 -11.242344 39.843384 2.715601E-01 4.139909E+01
24 -23.912643 33.227295 5.E41275E-01 4.093736E+01
26 -2.532063 46.953964 5.334625E-02 4.702219E401
28 -33.452271 40.679688 6.351567E-01 5.266774E+01
30 -7.003776 137.681641 5.080367E-02 1.378596E+02
32 -6.970445 137.211792 5.0735CCE-02 1.373887E402
34 -4.729492 134.574463 3.512237E-02 1.346575E+02
36 -9.327847 147.548218 6.30930IE-02 1.47a42SE+02
33 -12.510166 148.133352 8.415246E-02 1.4C6607E02
40 -26.663437 141.809352 1.847855r-01 1.442939E+02
4, -33.193481 142.878082 2.262937E-01 1.4o6332E+02
44 -12.814193 257.944580 4.961639E-02 2.2826Z7E+02
46 -15.117949 297.697266 5.071762E-02 2.950308E+02
48 -15.019808 296.079834 5.066378E-02 2.954604E+02
50 -14.401913 310.535400 4.632789E-Oa 3.108691E402
52 -15.951144 335.117920 4.754477E-02 3.354973E+02
54 -18.703232 373.776611 4.997602E-02 3.742441E+02
56 -C0.666031 423.620361 4.872638E-02 4.241240E+02

THE FOLLOWING ZEROS MATCHED POLES AND WERE ELIMINATED IN THE ABOVE LISTS

1 -1.0003605

3 -1.1766090 23.5027618

5 -14.5011034 32.9516602
6 -32.5591888
8 -5.9662676 37.1050110

10 4.600844 139.271133
12 -19.4964905 140.990448
14 -19.9740753 215.519897
16 -18.ZZ64557 218.800003
18 -13.5907398 268.270752
20 -14.9602709 298.845459
22 -15.7036667 305.726074
24 -15.4683867 310.114990
26 -18.6756439 372.778309
,8 -18.7397308 375.975530
30 -19.7651672 394.5803Z2
32 -20.4228973 408.166504
34 -22.2779338 444.873291
36 -22.4438934 448.315186
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Table 5. Closed-loop transfer characteristics, slew command
to slew response for observer 2 (sheet I of 2).

--------------- UNIQUE POLES----------------

S-PLANE

NUMBER REAL IMAG DAMPING FREQUENCY

1 -0.987259
2 -1.069546
3 -1.000226
4 -11.659215
6 -11.079893 0.694201 9.980430E-01 1.110162E+01
7 -12.376805
9 -13.033106 1.044375 9.968048E-01 1.307488E+01

10 -6.282499
11 -22.712341
13 -19.417023 20.433807 6.888410E-01 2.818796E+01
15 -16.052307 21.669006 5.952561E-01 2.696706E+01
17 -15.698311 22.468597 5.727350E-01 2.740938E+01
19 -18.631088 23.348709 6.237172E-01 2.987105E 01
21 -1.137619 22.723938 5.000000E-02 2.275238E+01
23 -1.083267 23.482864 4.608113E-02 2.350783E+01
25 0.089596 22.793396 -3.930740E-03 2.279356E 01
27 -31.485703 11.935660 9.350682E-01 3.36720cE+01
29 -16.756836 31.924820 4.647536E-01 3.605531E tl
31 -24.839035 30.254044 6.345487E-01 3.914441E,01
33 -11.940179 35.966766 3.150699E-01 3.789691E+01
35 -14.202227 39.408997 3.390362E-01 4.189000E+01
37 -1.926232 35.892975 5.358888E-02 3.594463E+01
38 -41.888321
40 -31.986328 33.282425 6.929286E-01 4.616107E+01
42 -8.727573 46.181061 1.856989E-01 4.699e52E401
44 -8.506873 147.394333 5.761918E-02 1.476396E+02
46 -8.484466 147.412018 5.746103E-02 1.476560E+02
48 -7.330895 147.433258 5.OOOOOOE-02 1.476179E+G2
50 -7.380128 147.417938 5.000000E-02 1.476026E+02
52 -6.895615 137.739792 5.000000E-02 1.379123E+02
54 -6.952700 138.880066 5.000000E-02 1.390540E+02
56 -30.203094 135.619827 2.173787E-01 1.389423E+02
58 -33.183334 135.125336 2.180005E-01 1.384554E+02
60 -39.497787 134.564545 2.816411E-01 1.402415E+02
62 -39.287430 133.329102 2.826496E-01 1.389969E+02
63 -105.252670
64 67.066559
66 -13.012999 259.891602 5.000825E-02 2.602170E+02
68 -14.786859 295.269775 5.001649E-02 2.956396E+02
70 -14.952042 297.097412 5.026346E-02 2.974734E+02
72 -13.806489 304.784668 4.525276E-02 3.050972E+02
74 -16.129684 322.229492 4.999394E-02 3.226326E+02
76 -18.707413 373.761719 4.998915E-02 3.742295E+02
78 -18.694656 372.771729 5.008746E-02 3.732402E+02
80 -19.345840 375.963623 5.138870E-02 3.764609E+02

THE FOLLOWING POLES MATCHED ZEROS AND WERE ELIMINATED IN ABOVE LISTS

NUMBER REAL IMAGINARY

2 -7.3352070 146.520645
4 -11.3795204 144.194107
6 -6.8707819 137.243759
8 -6.7724915 135.280411
10 -14.0057030 217.711624
12 -10.9059601 217.846375
14 -13.4055433 267.830322
16 -14.9545565 298.820801
18 -15.1777697 310.302002
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Table 5. Closed-loop transfer characteristics, slew command
to slew response for observer 2 (sheet 2 of 2).

----------------UNIQUE ZEROS----------------
1 -1.014238
z -1.001904
3 -5.527421
5 -11.603097 0.140680 9.999265E-01 1.160395E+01
6 -12.453119
8 -12.712068 0.993790 9.969581E-01 1.275085E401

10 -1.820453 8.797625 2.026327E-01 8.983999E+00
11 -21.852631
13 -15.977408 21.597702 5.947253E-01 2.686519E+01
15 -15.678535 22.439590 5.727469E-01 2.7374258+01
17 -19.426849 20.o45221 6.888220E-01 2.820300E+01
19 -6.972517 24.39Z653 2.748352E-01 2.536981E+01
21 -1.134023 22.743225 4.980015E-02 Z.277147E+01
23 -0.791293 23.566193 3.355857E-02 2.357947E+01
25 0.100199 22.784068 -4.397720E-03 2.278430E+01
27 -15.495689 30.807693 4.493430E-01 3.448521E+01
29 -12.255544 36.133194 3.21211E-01 3.815512E+01
31 -1.790771 36.227997 4.937031E-02 3.627223E+01
32 -39.742004
34 -15.999253 40.792191 3.651333E-01 4.381757E+01
36 -43.283508 10.643792 9.710442E-01 4.45741qE+01
38 -8.789634 46.187195 1.869494E-01 4.701611E+01
40 -64.693405 38.276611 8.606430E-01 7.516E69E+01
41 65.252930
43 -8.481948 147.411163 5.744437E-02 1.476550E+02
45 -8.506897 147.327850 5.764526E-02 1.4757328+02
47 -7.534446 147.033630 5.117587E-02 1.472265E+02
49 -7.387407 147.422943 5.004750E-02 1.476079E+02
51 -6.899275 137.761185 5.001873E-02 1.379338E+02
53 -6.618836 134.322495 4.921600E-02 1.344855E+02
55 -30.550735 135.341415 2.201907E-01 1.387467E+02
57 -30.182831 135.1249S5 2.179976E-01 1.384549E+02
59 -34.438171 139.312332 2.399775E-01 1.435058E+02
61 -39.287537 133.329437 2.826496E-01 1.38973E+02
62 -105.271210
64 -12.635200 258.243652 4.964066E-02 2.535623E+02
66 -14.735691 295.001055 4.987563E-02 2.954437E+02
68 -14.882603 296.835937 5.007458E-02 2.97Z2377+02
70 -13.30531 304.784912 4.5252358E-02 3.05C974E+02
72 -15.352722 315.840332 4.855182E-02 3.162131E+02
74 -16.479034 344.377197 4.779701E-02 3.447712E+02
76 -18.680878 373.775879 4.991651E-02 3.742424E+02
78 -18.694489 372.771240 5.008711E-02 3.732395E+02

THE FOLLOWING ZEROS MATCHED POLES AND WERE ELIMINATED IN THE ABOVE LISTS

2 -7.3352070 146.520645
4 -11.3795233 144.194138
6 -6.8707819 137.243759
8 -6.7724915 135.280411

10 -14.0057011 217.711624
12 -10.9059601 217.846375
14 -13.4055443 267.830322
16 -14.9545565 298.820801
18 -15.1777773 310.302002
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Table 6. Closed-loop transfer characteristics, slew command

to slew response for observer 3 (sheet 1 of 2).*

---------------- UNIQUE POLES----------------

S-PLANE
........................

NUiEE P PEAL IMAG DAMPING FREQUENCY

1 -1.004944
2 -10.550700
3 -10.323a56
4 -11.42;378
5 -12.440531
7 -12.065302 0.594815 9.987870E-01 1.207995E+01

9 -11.931503 1.418213 9.930098E-01 1.201549E+01

11 -1.137760 2Z.7237-5 5.000551E-02 2.275224r+O1

13 -1.287174 22.591370 5.6.33412E-02 2.262801E+01

15 -9.879208 22.558701 4.011520E-01 2.462709E+01

17 -19.142365 21.276001 6.638453E-31 Z.861939E+01

19 -28.973267 4.4807Z8 9.882520E-01 2.931769E+01

20 -33.133865
22 -19.923:50 29.565642 5.52825-O01 3.565204E+01

24 -23.01^3:,08 32.28733 5.&0352E-01 3.qo465£E+01

26 -11.96555 35.53379 3.19 276E-0l 3,T.91E+01

28 -7.103016 35.2322
, 5 1.976795E-01 3.393295E+01

30 -11.649165 39.731:73 2.e37937E-01 4.146056E+01

32 -10.117P65 40.6916777 2.412711E-01 4.1c7355E+01
34 -2.345220 46.851044 4.999434E-02 4.690973E+01

16 -6.8;5641 137.739307 5.000019E-02 1.379123E+02

38 -6.932720 13s.830525 4.99^3996E-02 1.3c0545E+02

40 -6.897453 135,543747 5.082157E-02 1.357191E+02

42 -7.3e0558 147.426270 5.000029E-02 1.4T109E+02

44 -7.235736 146.225311 4.942300E-02 1.464042E+02

46 -26.887207 145,029877 1.682247E-01 1.475011E02

48 -26.902924 145.057587 1.623540E-01 1.475312E+OZ

50 -22.379166 146.355112 1.511430E-Cl 1.45661E+02

52 -17.6975Z6 217.276377 3.113320E-02 2.17C95E+02

54 -19.0C6470 217.6E5746 8.6994E-02 Z.1,84^ 02+0

56 -13.010519 259.8,34033 5.00C2175E-2 .62255+02

53 -14.723Z28 295.295303 4.9'Q45,5-02 2.-8q688E+02

tO -14.576577 297.122803 5.OC0616E-02 3.9743432 02

62 -16.131653 32.2:41:1 5.000033E-02 3.226277E+02

64 -18.711212 373.756104 5.0C0002E-02 3.742:41E+02

66 -18.828690 376.067139 5.000474E-02 3.765381E+02

THE FOLLOWING POLES MATCHED ZEROS AND WERE ELIMINATED IN ABOVE LISTS

NUMBER REAL IMAGINARY

1 -1.0049181
2 -1.0004549
4 -1.1766090 23.5027618
6 -6.8707666 137.24365Z

8 -13.4099436 267.836914
10 -14.9596920 298.819336

12 -15.2195362 304.04216
14 -15.536292 310.3C4443
16 -13.6623077 372.77Q541

Input transform also included. BC



Table 6. Closed-loop transfer characteristics, slew command
to slew response for observer 3 (sheet 2 of 2).*

------------ --- UNIQUE ZEROS----------------1 -i0.535695

3 -i2.0->77 0.37'931 9.914 CE-01 !.CI!0+01
5 -1i.9-.7620 1.4I141 9.9335>51-01 1.203I156 01

7 -9.73>3Z9 5.6-o!14 8.623 E-0l 1.1377>6+31
9 0.!5:455 7.464769 -2.0.IC3oE-02 7.466326E+00

11 -1.137530 22.723929 4.9' 9593E-02 2.275>46E+01
13 -1.287189 22.591400 5.682472E-02 2.26a34E+01
15 -19.147766 21.292847 6.686599E-01 2.863603E+01
16 -33.134216
18 -7.103048 35.222870 1.976807E-01 3.5c3!Q3E01
20 -11.965901 35.53001 3.1^50!CE-01 3.749937E+01

22 -11.273047 39.c50729 2.71693E-0! 4.15123!E+01
24 -23.063473 :2.254059 5.817533E-01 3.c6550CE+01
26 -2.345032 46.851105 4.999027E-O 4.690^7;E+01
28 -43.446594 21.345001 8.975313E-01 4.840677E+01

30 -11.056975 55.068802 1.968559E-01 5.616786E+01
31 -88.551650
32 52.545685
34 -6.8C5600 137.739777 4.999991E-02 1.379122E+02
36 -6.95754 138.833392 5.000136E-02 1.3q977E3+02
33 -6.837335 135.543594 5.0SZOSOE-G2 1 3571896402
40 -7.38O616 147.427Z00 5.002717E-02 1.4761!E+32
42 -7.235695 146.225250 4.942274E-02 1.4i4C6<E+C
44 -Z6.895>:5 145.033401 1.8233756-01 1.475C62E+O
46 -13.026>9 144.397751 1.92 <730-01 1.47C9136+02
48 -21.191711 147.524414 1.421533E-01 1.490337+02
50 -17.697617 217.276108 8.118331E-02 2.1799576+02

52 -19.006409 Z17.655685 6.699220E-02 2.184839E+02
54 -13.008091 259.84$359 4.999774E-02 2.601736E+02
56 -14.752550 295.284180 4.9999526-02 2.9565 3+02

58 -14.865562 297.068604 4.99783ZE-02 Z.974402E+02
60 -16.104568 321.855287 4.997361E-02 3.223615E+02
62 -18.711197 373.755127 5.0000116-02 3.742231E+02

64 -18.517227 371.971436 4.971977E-02 3.724319E+02

THE FOLLOAING ZEROS MATCHED POLES AND WERE ELIMINATED IN THE ABOVE LISTS

1 -1.0049171

2 -1.0004549
4 -1.1766090 23.5027618
6 -6.8707666 137.243653

8 -13.4099426 267.836914
10 -14.9596920 Z8.819336
12 -15.2195453 304.042236

14 -15.5362911 310.304443
16 -18.6623077 372.779541

Input transform also included.
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X A1 + B1K 0 0 BK 1  x

2  0 A2  0 B2K 1  x2

x3  B3K 1  0 A s  B3K 1  x(35)

e 0 0 GC3  A1 - GC1

and the closed-loop system is again unstable.

The final design is of dimension 22, and uses an output transform

to spatially filter the system output. The closed-loop equation has

the form

xI  A1 + B0K1  0 BIIK 1 X

2  B2K 1  A 2  0 B2K 1  x 2

x3  B3K 1  0 A3 B3K 1 x3

e~j 0 GT3C2 GT3C 3  A1 - GT 3Cj Le

If Eq. (32) is satisfied, then Eq. (36) becomes

x A + BK 1  0 0 BK1 - x

2 B 2 1 2 B2 K1 -2

B3K 0 A B3K (37)

e 0 0 0 A - GT3C 1  e

observation spillover has been eliminated and the closed-loop system is

stable. In fact, the poles of Eq. (37) include the poles of [A + BI K I,

A2 , A3 , and [A1 - GT3C . Returning to Table 6, one can verify that the

numerical results can also be categorized this way.
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The results presented here illustrate the effect of spillover,

and demonstrate that a singular output transform can be used to eliminate

the observation spillover from a finite number of modes. If observation

spillover is eliminated, the unmodeled plant modes will still be excited

by the controller (B2 K I, B3 K x), but the overall system will be stable.

In the case considered above, enough outputs are available to

eliminate spillover from the x 2 and x 3 modes. Using an evaluation model

which includes x x2 and all of x 3, one can calculate the closed-loop

eigenvalues (see Table 7). Again the regulator, observer, A2 , and A3 poles

are uncoupled. If x or x 5 modes are included in the evaluation model,

then the effects of spillover will be seen. However, by filtering the

x and x 3 states, the transform creates a frequency separation between

the x information and the residual mode spillover.

3.3.2 Input Transforms

The optical performance requirements of the M2V2 satellite dictate

that the set of modes {23, 26, 28, 29, 30} be isolated from the disturbing

effect of control action. These modes are higher in frequency than all

the x modes, and are not explicitly included in the quadratic cost

expression. As illustrated earlier, the baseline optimal control law

does in fact excite this set of modes. If the level of excitation is un-

satisfactory from a system's viewpoint, two options are available. One

alternative is to include these additional modes in the performance index.

This course of action is undesirable because it increases the dimension

of the optimal control law. The other alternative is to use an input

transform to constrain the spatial content of the control. To illustrate

the effects of the input transform, two configurations are compared.

These configurations are shown in Figure 23. Both have the same plant

model, and the same observer to process the plant output signal y and to

estimate x 1 The configurations differ only in the control law. Configura-

tion 1 uses a control law of the form

u K I - (38)
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Table 7. Closed-loop transfer characteristics, slew command
to slew response for x1 2X23 plant model (sheet 1 of 2).

---------- - UNIQUE POLES

S-PLANE

N"JrBER REAL IMAG DAMPING FREQUENCY

1 -1.012941
2 -1.005194
3 -1.C00736
4 -6.380075
6 -11.496717 0.171995 9.998882E-01 1.149800E+01
8 -12.032524 0.571587 9.988737E-01 1.204609E+01
9 -12.439398

10 -12.895002
11 -10.245658
13 -1.137719 22.723770 5.000474E-02 2.275223E+01
15 -1.237823 22.667725 5.452604E-02 2.270149E+01
17 -8.3Z4352 22.063034 3.53C093E-01 2.353119E+01
18 -25.994095
.0 -28.S65134 4.446473 9.84217E-01 2.930443E+01
22 -19.102529 20.924'&6 6.742216E-01 2.E333168+01
C4 -ZI.17:334 30.945023 5.646746E-C! 3.749-.E+01
26 -17.795761 35.359451 4.495571E-01 3.9535108+01
^3 -11.932:670 35.546052 3.195541E-01 3.751333E+01
30 -6.4S0253 35.364639 1.802400E-01 3.505346E+01
32 -11.847562 39.729355 2,857709E-01 4.145525E+01
34 -10.118303 40.696686 2.412815E-01 4.193567E+01
36 -Z.34503Z 46.b51t5; 4.93029E-02 4.600974E+01
38 -6.953517 138.832187 5.000510E-02 1.390561E+02
40 -6.742580 135.218918 4.980231E-02 1.353869E+02
42 -7.360596 147.426270 5.00034E-0Z 1.47t109E+02
44 -18.366832 146.334518 1.245359E-01 1.474526E+02
46 -22.378647 146.381439 1.5112325-01 1.480522E+02
48 -23.743332 145.583058 1.60qs52E-3I 1.475114E+02
50 -20.279205 215.531940 9.36533CE-02 2.165336E+02
52 -17.621277 218.691010 8.031513E-02 2.193Y?E+02
54 -13.01C453 C59.8:4033 5.COc3E-o0 2.6020c3E+2
-6 -13.40319 :67.C::5;O 5.CC30^SE-O 2 .68163E.2
53 -14.722457 2;5.2q5654 4.9' 27E-33 2.q5653E+02
60 -14.874912 297.1^6465 4.019?Z58-2: Z.974955E+02
62 -16.131378 32Z.2Z4121 4I9?SE-02 3.226277E+02

64 -18.711212 373.756104 5000002E-02 3.742241E+02
66 -18.825568 376.067333 5.00043eE-02 3.765353E+02
68 -18.848114 376.43:617 5.000772E-02 3.76:041E+02
70 -19.749481 314.502441 4.9q901SE-02 3.949963E+02
72 -22.4296 8 448.39858, 4.99502-E-02 4.459592E+C2
74 -22.891510 457.258057 4.9399:6E-02 4.578306E+02

THE FOLLOWING ZEROS MATCHED POLES AND WERE ELIMINATED IN THE ABOVE LISTS

2 -1.1766090 23.5027618
4 -6.8957291 137.739944
6 -6.8707829 137.243713
8 -7.3597240 146.5 6191

10 -14.9596624 293.818848
12 -15.2212658 304.044189
14 -15.5341339 310.316162
16 -18.6623230 372.779541
18 -23.4317169 408.086914
20 -22.153Z440 445.004150

Input transform also included. 84



Table 7. Closed-loop transfer characteristics, slew command to
slew response for xlxx3 plant model (sheet 2 of 2).*

-------- UNIQUE ZEROS----------------
1 1.035:41
2 -1.022740
3 -10.4164cz
5 -11.6233:3 0.141190 9.999Z63E-01 1.162468E+01
6 -1Z.852970
7 -12.252294
9 -5.330327 6.329781 6.441347E-01 8.275174E+00

11 0.908830 6.610679 -1.361980E-01 6.672857E+00
13 -1.137522 22.724045 4.999546E-02 2.275250E+01
15 -1.237846 22.667740 5.452706E-02 2.270151E.01
16 -25.981155
18 -19.109406 20.930420 6.742507E-01 2.834169E+01
20 -19.411041 34.196747 4.936455E-01 3.932182E+01
22 -11.983514 35.546143 3.195870E-01 3.751346E01
24 -6.480372 35.364548 1.802437E-01 3.595338E+01
C6 -11.175797 40.430679 2.664276E-01 4.1946834E+01
28 -2.344984 46.851273 4.938909E-02 4.690991E01
30 -48.028336 25.204910 8.854735E-01 5.4240230+01
32 17.952972 57.511398 -2.9795258E-01 6.024540E+01
34 -6.9535?l 133.8S2339 5.000773E-02 1.3930563+02
36 -6.7425;4 135.218933 4.930241E-02 1.353049E+02
38 -17.14C594 116.660004 1.453671E-01 1.17A258t02
40 -7.372447 147.483505 4.9925'5E-02 1.47t,?7oE 2
42 -13.776550 146.527725 9.352072E-02 1.471741E+0Z
44 -24.610355 145.780365 1.66465;E-01 1.47E432E+C2
46 -63.776683 139.703751 4.152264E-01 1.53572E+02
48 -20.277786 215.581070 9.354766E-02 2.1653bE+02
50 -17.622528 218.692062 8.032107E-02 2.194009E+02
52 -13.009516 259.679883 4.999716E-02 2.602051E+02
54 -13.408500 267.829590 5.00009:E-02 2.681650E+02
56 -14.761109 295.238525 4.993488E-02 2.956072E+02
58 -14.871683 297.111328 4.999168E-02 2.Q74832E+02
60 -16.123535 3'2.178223 4.998286E-C2 3.225813E+02
62 -18.711029 373.7543;5 4.999975E-02 3.742224E+02
64 -18.94CS5 376.568359 5.034947E-02 3,77C464E+02
66 -18.843312 376.4321^9 5.000831E-02 3.76303E+02
68 -19.749710 394.50Z441 4.999973E-02 3.940953E+C2
70 -22.429733 448.39682 4.995943E-02 4.4'S95ZE02
72 -22.846939 456.939209 4.9;3757E-02 4.57510:E-C2

THE FOLLOWING FOLES MATCHED ZEROS AND WERE ELIMINATED IN ABOVE LISTS

NUMBER REAL IMAGINARY

2 -1.1766090 23.5027618
4 -6.8957253 137.739307
6 -6.8707829 137.243713
8 -7.3597^38 146.596191

10 -14.9596577 298.818848
12 -15.2212582 304.044189
14 -15.5341311 310.316162
16 -18.6623230 372.779541
18 -20.4317169 408.086914
20 -22.1532440 445.004150

Input transform also included.
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CONFIGURATION 1
OPTIMAL GAINS

PLANT

S1 , i2 , 3 ">

CONFIGURATION 2
INPUT TRANSFORM

Figure 23. Alternate controller configuration: mode isolation.
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where K1 is the baseline optimal gain matrix. Configuration 2 uses a
control law of the form

u T TK 1

where the columns of T2 are orthogonal to the rows of the input distri-

bution matrix B, which correspond to modes 23, 26, 28, 29, and 30. K1

is the optimal constrained gain matrix. The matrix T2K1 has the same

dimensions as the matrix KI .

The optimal control law, Eq. (38), minimizes the quadratic per-

formance index

J =J xRix I + uTR dt (39)

to

subject to the constraint

xi = AIX I + BU (40)

Any other choice of control will imply an equal or greater cost.

The gains K1 were selected by minimizing the same performance

index

J = xix I +uTR dt (41)

to

subject to two constraints

1 = AlXl + BlU (42)

u = T4 (43)
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This second constraint restricts the spatial content of u.

Equations (41) , (42) , and (43) can be rewritten

j x R +Rudt (44)f 1 lXl + U
to

= A12- + BTu (45)

where R2 is given by

-T

R2 T 2 R2 2(46)

The control which minimizes J is

u Kx

where

K, = R 2B1T 2 P

and P is the solution to the appropriate algebraic Riccati equation.

0 = -TA + AP + R 1 - PBT 2 [R2 ] - TTB (47)

The trace elements of the cost matrices P and P are compared in

Table 8. These elements reflect the cost of nulling a unit initial con-

dition on any xI state. As expected, the optimal control law costs are

lower in every case than the corresponding costs of the spatially con-

strained control. Similarly, the poles of [A1 + B1 K are (see Table 9)

incrementally faster than the poles of [A + BI T K I The decrease
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Table 8. Cost comparison.

Cost with
Mode Optimal Cost Cnpt t

Input Transform

Displacements

4 1.716 1.730

5 1.844 1.949

6 1.852 1.862

7 289.249 342.145

10 0 0

11 73.145 78.539

12 36.545 39.789

13 54.002 56.656

20 536.035 624.594

21 539.150 696.428

22 8315.590 13287.459

Velocities

4 0.052 0.066

5 0.205 0.353

6 0.214 0.228

7 0.686 0.745

10 0 0

11 0.056 0.060

12 0.020 0.024

13 0.025 0.026

20 0.024 0.027

21 0.024 0.031

22 0.174 0.279
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in x 1 dynamic performance is the penalty associated with the spatial con-

straint. The benefit of the constraint is best illustrated in the time

domain. Figures 24 and 25 compare the time responses of the two systems

to a unit initial condition on each x1 displacement state. Several

observations can be made.

(1) Modes 4, 5, 6, 7, 10, 11, 12, 13, 20, 21, and 22 are x1

modes and are controlled. The time response of the x

modes for the optimal law is slightly faster than the

response provided by the constrained law. This is con-

sistent with the closed-loop pole analysis.

(2) Modes 8, 9, 14, 15, 16, 17, and 18 are x2 modes. The

dynamics of these modes are not fed back because of T3 .

There is evidence of control spillover, however, for both

control designs. (Mode 19 not shown.)

(3) T2 is designed to suppress control spillover for modes 23,

26, 28, 29, and 30. The time-history traces indicate that

the optimal control law excites these modes. The constrained

design, on the other hand, shows sharply reduced excitation

levels except for mode 29. In theory, the excitation can be

suppressed completely. In practice, there is a tradeoff be-

tween suppressing modes and retaining control authority over

2S modes. This topic is discussed in Appendix H, including

the reason for allowing spillover into Mode 29.

In summary, an input transform can be used to suppress control

spillover into a set of uncontrolled modes. The penalty for implementing

the transform is an increase in cost. The tradeoff between the spillover

suppression and the cost penalty can be done at the systems level.

An additional comment, which is appropriate here, is that cost

reflects the dynamics of only x1  Any plant/controller interactions

which occur outside x space are not seen in the performance index. This

point has been made previously. It is repeated here to emphasize that

transforms have a much greater impact on the system than the performance

index alone would indicate.
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-'T CONFIGURAGION 1
OPTIMAL GAINS

2.2~ .25 21 275 .20 22 7.8 732
TIME "N ' ON

-T

00. 0.0N 0.08 .2 0. 15 0.26 22 2. 28 0.32 0.36 :~
T ME IN SELON05

Thoo 2 .. 3.8 2.12 0.6 I .2 .2 2.5 .32
T:ME :N SEC'-NC

2.2I 2., 2.2 31 C.2 Q.2' .25 .32 6 -36
TIME IN SEC'O

Figure 24. Output transform (sheet 1 of 6).
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T:ME !N E:CNC5

7-'E: '8:25:1 . i : O7/i-/80 .80/:961

a. 0 .:8 .:2 .;S .2 0 . 0. 0.32 1.8 2.40
-, 7""E :N SE'-0CS

2 :jf 32C 0. .28 - -32 36 14

Figure 24. Output ransform (sheet 2 of 6).
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F ijure 24. Output tcransfor-m (sheet 3 of 6).
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.- - 0.24 ,. 8 0.32 0.36 0.40v ,J TIE IN SECONDS

D

00 o.04 ! 0o8 0!& 12 i 0. 16 0o2 .2 o.! 28 0! 3o'!36 0. -o

.9 4 .1 0.18 0.20 0. 24 0.28 0.32 0.38 0.40

S0 2 TIME IN SECONDS

0

.

v TIME IN SECONDS

Figure 24. Output transform (sheet 5 of 6).
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ooO. 4rV - 0.12 016 0.20 0.2 0.28 0.32 3r 0.W

TIME IN SECONDS

CY

W0.0-

00 0.~ 008 0.12 0.1s 0. 20 0.21 0.28 0.32 0.36 0.40
TIME IN SECONDS

201

Figure 24. Output transform (sheet 6 of 6).
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SPATIALLYTCONTAIE

0E

INPU

'b.o0o 0.014 0.08i 0.12 0.16 0.20 0.24 0. 28 0. 32 0. 38 0.1W

TIME IN SECOnNDS

0 0.% .0 0.2 0.15 0.2 0.24 0.28 0.32 0.3 0.1W

~~0f 001 0. .12 TIME IN SECOS

Figure 25. Input and output transforms (sheet 1 of 6).
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't Do 0.0 0.08 0.1 0.16 0.20 0. 03 .6 04

TIEINSCOD

Lug.

C:-b00 0.04 0.8 .2 . 0.20 0.24 0.28 0.32 0.36 0.40
TIME IN SECONDS

00 0.a 00 .2 0.1 0. 20 0.2v 0.26 . 03 0.40

00 al-W -0.08 0.1ll2- 0.116 -0.20 0c!2 0.2 032 0!.36 0.1Q
TIME IN SECONDS

Figure 25. input and output transforms (sheet 3 of 6).
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0. 0.2 0.2 0.2f 0.\r -"32 0.6 040

00 004 .08 .22 TIME IN SECONDS

Cl

C

P ov0.oa& 'l a. -12 .1 .0 24 . 0 0.40

Figure 25. Input and output transforms (sheet 4 of 6).
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Figure 25. Input and output transforms (sheet 5 of 6).
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Figure 25. Input and output transforms (sheet 6 of 6).
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3.3.3 Residual Mode Effects

The preceding sections illustrate the properties of input and

output transforms in a closed-loop system context. Of particular inter-

est are the control and observation spillover-suppression properties.

However, the number of modes which can be suppressed is finite and, if

the number of residual modes is greater than the number of suppressed

modes, some spillover will occur (see Appendix A). The introduction

advances the hypothesis that if input and output transforms suppress

the interleaved residual modes, and enough additional modes can be

suppressed so that there is a frequency separation between controlled

and residual modes, then frequency-domain techniques can be used to

account for the remaining residual modes. Consider the M2V2 plant as

an example. If the transforms T2 (input) and T3 (output) are intro-

duced, the control to observed output signal paths (see Figure 26)

will contain x1, x4 , and x 5 information. Then, if a controller of

the form

u = Kx

x = Ax + B +GT 3 [y -CX l ] (48)

is implemented, (IC from Section 3.3.2, G from Section 3.3.1) spillover

from 4 and higher frequency residual modes will occur. This spillover

can be expected to adversely affect closed-loop performance. Specifically,

a plant of xk and 24 dynamics was cascaded with the controller above (see

Figure 27). Table 10 gives the closed-loop poles for this configuration.

Based on discussions in Section 3.2.3, one would expect spillover to af-

fect both the closed-loop poles and the unmodeled plant poles. The

numerical results bear this out. The observer poles (at -12 + Oj)

have migrated, as have the high-frequency 24 poles. There is a distinct

frequency separation between x and 4, however, and the singular per-

turbation techniques of Section 3.2 and Appendix E should be applicable.
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SYSTEM

1 2 3 5 6 7 8 2 rad/s

u TO ; SIGNAL PATHS

°lxl"! I lI II I l .l ii I IIIII1I ,

Figure 26. Spectral content.

,. CONTROLL]ED1 MODES Al

.COMMAND 
S SPPRESSED

-r(+. 
MODES

RESIDUAL
B4 MODES A4  C4

* CONTROL LAW = K~
AA

* OBSERVER x AlX AxBTj+G 3 fy - CIA~

Figure 27. Closed-loop configuration--residual effects included.
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Table 10. Closed-loop poles and zeros, slew command to
slew response for xI , x4 plant (sheet 1 of 2).

---------------- UNIQUE POLES----------------

S-PLANE

NUMBER REAL IMAG DAMPING FREQUENCY

1 -1.013303
Z -1.005209

3 -1.000392
4 -5.090219
6 -9.572584 0.791795 9.965966E-01 9.605274E+00
8 -IZ.248342 1.567404 9.919112E-01 1.2343Z2E+01
10 -7.896777 6.165940 7.881898E-01 1.001888E+01
11 -17.293930
12 -25.011749
14 -7.681919 21.380539 3.381319E-01 2.271870E+01
16 -16.932022 20.992416 6.278123E-01 2.696C88E01
18 -14.261611 33.662659 3.900974E-01 3.655910E+01
20 -6.251226 35.371292 1.740347E-01 3.591943E01
22 -16.159561 35.818222 4.11239.E-01 3.9ZS474E+01
24 -22.058914 32.5339z0 5.611935E-01 3.9-0714E+01
26 -9.925739 40.293793 2.39134ZE-01 4.14;331E+01
28 -13.225443 40,912445 3.075;00E-01 4.29369SE+01
30 -33.674622 22.403234 8.325238E-01 4.C44SS4E+01
32 -7.380591 147.426270 5.000031E-02 1.476109E+02
34 -18.239471 146.982559 1.231482E-01 1.481099E+02
36 -19.691284 143.373672 1.360651E-01 1.447196E+02
38 -26.942505 149.447433 1.774206E-01 1.518566E+02
40 -23.399048 188.200195 1.233307E-01 1.89.492E+02
42 -11.963984 219.641251 5.438994E-02 2.199568E+02
44 -23.507065 469.643799 4.999039E-02 4.702317E+02
46 -24.157578 477.839844 5.049133E-02 4.784500E+02
46 -31.554672 539.892334 5.834666E-02 5.408137E+02
50 -Z6.593765 571.815430 4.645740E-02 5.724333E+02
52 -27.649902 607.891846 4.543793E-02 6.085203E+02

THE FOLLOWING POLES MATCHED ZEROS AND WERE ELIMINATED IN ABOVE LISTS

NUMBER REAL IMAGINARY

2 -1.1766090 23.5027618
4 -27.1470642 542.287109
6 -29.1265259 552.700684
8 -30.3554840 606.3205S7
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Table 10. Closed-loop poles and zeros, slew command to
slew response for xI, x plant (sheet 2 of 2).

-UNIQUE ZEROS ----------------
. -1.005443
2 -1.000397
3 -6.136703
4 -9.495000
6 -4.506025 6.337749 5.794539E-01 7.776331E+00
8 0.831102 6.590878 -1.3Z5062E-01 6.649511E+00
9 -16.853185

11 -15.017513 7.981828 8.830240E-01 1.70C691E+01
12 -Z4.974045
14 -16.935242 20.978592 6.281349E-01 2.696115E+01
16 -19.075562 33.889740 4.905069E-01 3.838948E+01
18 -16.168900 35.824432 4.11373!E-01 3.930423E+01
20 -6.251682 35.371613 1.740454E-01 3.59!9832+01
22 -11.387846 40.522385 2.705458E-01 4.2G9212E+01
24 -47.406754 25.131973 8.835236E-01 5.365646E+01
26 18.161652 57.403748 -3.016471E-01 6.02CS27E+01
28 -17.331757 116.419693 1.47Z502E-01 1.177027E.OZ
30 -13.793S17 146.473846 9.375769E-02 1.471219E+02
32 -7.37Z199 147.483704 4.992420E-02 1.476678E+02
34 -24.665343 145.225693 1.674469E-01 1.473055E+02
36 -62.854374 142.773788 4.029234E-01 1.55;971E£02
38 -23.409515 183.197205 1.234369E-01 1.8=647*E.02
40 -11.964111 219.641068 5.439356E-02 2.19q:67E+02
42 -23.507019 469.644043 4.999026E-02 4.70231qE 02
44 -24.157547 477.839344 5.049127E-02 4.7e4500E02
46 -31.527542 539.855957 5.830060E-02 5.407756E 02
48 -26.593735 571.815430 4.645735E-02 5.724333E+02
50 -27.662201 607.906950 4.545701E-02 6.085354E 02

THE FOLLOWING ZEROS MATCHED POLES AND WERE ELIMINATED IN THE ABOVE LISTS

2 -1.1766090 23.5027618
4 -27.147C642 542.Z37109
6 -29.1265259 552.700684
8 -30.3554840 606.320557
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For the specific case under consideration here, singular perturbation

theory suggests that the observer be modified.

= A x+Bu+Gy- y)

- 1- --

9 T SC 1  T C4A IB4Tu

The dc correction term T3 C 4A B T is a 4xl matrix (dim [y] x dim (u]).

C4A41 B represents the static deformation of residual modes due to unit

loads at the actuators as observed at the sensors. This matrix will

converge for a large enough number of residual modes because the static

displacement of a structure is smooth and bounded. Table 11 shows the

convergence of T3 C4A41B4T2 as one, two, three, etc., of the x4 modes are

included.

The modified observer was implemented for the xI , 2 plant, and

the closed-loop characteristics are given in Table 12. The correction

term returns the observer poles to "prespillover" values, but has a less

pronounced effect on the residual modes. This is intuitively correct:

the dc term is fundamentally a low-frequency correction.

The x x plant serves to illustrate the effect or residual modes,
-1-4

but it assumes that T2 and T3 completely suppress the x2 and x3 modes.

If the modified controller is applied to an xlx 3 x 4 plant, an inter-

esting comparison is available.

(i) Table 13 gives the poles of an unmodified controller on

an xlx 3 plant.

(2) Table 14 gives the poles of a modified controller on an

l.2X 3.4 plant.

(3) Table 12 gives the poles of a modified controller of an

l 4 plant.

* Compare Tables 6, 10, and 12.
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Table 12. Closed-loop poles and zeros, slew comand to slew
response for x , x plant, dc correction included
(sheet 1 of 2).

------------- UNIQUE POLES----------------

S-PLANE
------------------------

NUMBER REAL IMAG DAMPING FREQUENCY

1 -1.012940
2 -1.005177
3 -1.000744
5 -11.691469 0.472293 9.991851E-01 1.170100E+01
7 -12.271549 0.426408 9.993969E-01 1.227895E*01
9 -11.907424 0.984103 9.966022E-01 1.194602E+01

10 -10.437132
11 -6.378399
12 -25.977539
14 -29.046371 4.679237 9.872715E-01 2.94ZOBSE+01
16 -8.324968 22.054962 3.531443E-01 2.357384E 01
18 -18.976929 21.119812 6.683630E-01 Z.839314E01
20 -21.148926 30.951030 5.641731E-01 3.748659E01
22 -17.792923 35.337494 4.497226E-01 3.956421E*01
24 -12.101912 35.5ZS861 3.224223E-01 3.75T435E+01
Z6 -6.467656 35.431305 1.795734E-01 3.601677E+01
28 -11.851106 39.740463 2.857761E-01 4.14698

0
E+01

30 -10.121757 40.692001 2.413852E-01 4.193196E+01
32 -7.380593 147.426270 5.000032E-02 1.476109E+02
34 -18.347107 146.270096 1.244578E-01 1.474162E+02
36 -ZZ.09Z773 145.536942 1.500824E-01 1.472042E+02
38 -24.123764 146.663467 1.623029E-01 1.486342E+02
40 -22.358002 211.578491 1.050872E-01 2.127565E+02
42 -15.382879 219.692368 6.984901E-02 2.202303E.02
44 -23.507050 469.644043 4.999033E-02 4.702319E+02
46 -24.166153 477.837158 5.050949E-02 4.784478E+02
48 -31.528839 539.871094 5.830133E-02 5.407910E+02
50 -26.542984 572.176514 4.633968E-02 5.727917E+02
52 -27.664230 607.903076 4.546058E-02 6.085322E+02

THE FOLLOWING POLES MATCHED ZEROS AND WERE ELIMINATED IN ABOVE LISTS

NUMBER REAL IMAGINARY

2 -1.1766090 23.5027618
4 -27.1470642 542.287109
6 -29.1354675 552.672607
8 -30.3554840 606.320557
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Table 12. Closed-loop poles and zeros, slew command to slew
response for x , x plant, dc correction included

(sheet 2 of 2).

--------------- -IQUE ZEROS.----------------
I -1.005U24
2 -1.000748
3 -10.15S46

5 -119,38153 0.917469 9.970599E-01 1.197336E+01
7 -12.161644 1.02027Z 9.964994E-01 1.ZZ0437E*01
9 -5.328587 6.326995 6.441776E-01 8.271921E+00

11 0.908337 6.610736 -1.361979E-01 6.672915E+00
12 -25.982590
14 -18.977676 21.116013 6.684443E-01 2.839081E+01
16 -19.410522 34.29636 4.936393E-01 3.932126E+01
18 -12.101197 35.529922 3.224047E-01 3.753418E901
20 -6.467691 35.431274 1.795745E-01 3.601674E+01
22 -11.176970 40.432083 2.664449E-01 4.194852E01
24 -48.030716 25.E04117 8.854890E-01 5.424202E 01
Z6 17.952332 57.502731 -2.980137E-01 6.023994E+01
28 -17.155441 116.653046 1.454988E-01 1.179078E+02
30 -24.617371 145.735733 1.665584E-01 1.47800ZE02
32 -13.782695 146.511215 9.365910E-02 1.471581E+02
34 -7.372384 147.483429 4.992554E-02 1.476676E+02
36 -63.925949 140.004272 4.153513E-01 1.53 9082E+02
38 -92.353556 221.57a995 1.050910E-01 2.127571E*02
40 -15.3S3151 219.69C276 6.965333E-02 2.C02302E+02
42 -23.507019 469.644043 4.999126E-02 4.702319E+02
44 -24.166122 477.837158 S.050943E-02 4.784476E+02
46 -31.501404 539.835449 5.825463E-02 5.407537E002
48 -26.542953 572.176758 4.633960E-02 5.727920E 02
50 -27.676620 607.917236 4.547985E-02 6,085469E+02

THE FOLLOWING ZEROS MATCHED POLES AND WERE ELIMINATED IN THE ABOVE LISTS

2 -1.1766090 23.5027618
4 -27.1470642 542.287109
6 -29.1354675 552.672607
8 -30.3554840 606.320557
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Table 13. Closed-loop transfer characteristics, slew command to

slew response for x, x2 , x3 plant model, unmodified

controller only 20F states included (sheet I of 2).

---------------- UNIQUE POLES----------------

S-PLANE

NUMBER REAL IMAG DAMPING FREQUENCY

1 -1.012941
2 -1.005194
3 -1.000739
4 -6.379978
6 -12.005651 0.081773 9.999768E-01 1.200393E+01
8 -11.606636 0.748193 9.979287E-01 1.163073E+01

IQ -12.47Z207 0.679230 9.985204E-01 1.249069E+01
11 -10.235530
13 -1.137719 22.723770 5.000474E-02 2.2752:3E+01

15 -1.238274 22.667587 5.454620E-02 2.270137E+01

17 -8.3^4354 22.063034 3.530094E-01 2.35119E+O1

18 -Z3.991760
20 -,8.966324 4.450431 9.834021E-01 2.9306:1E+01
22 -19.03351 21.091461 6.695308E-01 z.&40C:E+0I
24 -21.17Z241 30.944992 S.644721E-01 3.74C475E,01

6 -17.795aS3 35.35 543 4.49555E-01 3.958524E 01
za -12.000372 35.537225 3.199355E-01 3.75061E+01
30 -6.461918 35.369731 1.802616E-01 3.595883E 01

32 -11.847546 39.729340 2.857707E-01 4.14532ZE 01
34 -10.118307 40.6966A6 2.412816E-01 4.193567E 01

36 -2.34O032 46.851089 4.999029E-CZ 4.690974E+01
38 -6.953511 138.832172 S.000507E-02 1.390561E 02
40 -6.742848 135.219208 4.980417E-02 1.35337^E 02

42 -7.380596 147.426270 5.000034E-02 1.4761092E02
44 -18.366852 146.33441Z 1.245357E-01 1.474825E+02

46 -22.37a693 146.381577 1.511233E-01 1.4608:3E+02
48 -23.743332 145.588058 1.609592E-01 1.475114E+02

50 -19.276627 217.058S07 8.46015E-02 ,.179131E+01

52 -18.671051 217.7C0505 8.544332E-02 C.1351q6E40:
54 -13.010483 ^59.864033 5.00OC03E-02 C.60Z095E+0Z

56 -13.403322 Z67.8Z95q0 5.000OZ6E-02 Z.61605E 02

58 -14.78247 2;3.Z95654 4.999727E-02 2.;5665-E+02
60 -14.874912 297,126465 4.999995E-02 2.974935E+02
6z -16.131378 322.224121 4.9999q$E-02 3.26277E02
64 -18.711212 373.756104 5.00.002E-12 I 7&f'-47+O:

66 -18.828568 376.067383 S.00043SE-02 3.765383E#02

THE FOLLOWINS POLES MATCHED ZEROS AND WERE ELIMINATED IN ABOVE LISTS

NUMBER REAL IMAGINARY

2 -1.1766090 23.5027618
4 -6.8957253 137.739807
6 -6.8707829 137.243713

8 -7.3594818 146.595718
10 -14.9596577 Z98.818848
12 -15.2212582 304.044169

14 -15.5341215 310.316162
16 -18.6623230 372.779541
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Table 13. Closed-loop transfer characteristics, slew ccmmand to
slew response for x,, ?2, x3 plant model, only 20 3
states included (sheet 2 of 2).

---------------- UNIQUE ZEROS ----------------
I -1.0C5Z41
2-1.000743

3 -10.40Z9:5
5 -11.5a4787 0.713611 9.981082E-01 1.160674E*01
7 -12.431441 0.648710 9.9a652CE-01 1.Z49829E#01
9 -5.330287 6.329798 6.441309E-01 8.275161E.00

11 0.908833 6.610667 -1.361986E-01 6.67C847E+00
13 -1.1375,2 22.724045 4.909546E-02 2.275^50E+01
15 -1.238297 22.667603 5.454713E-02 2.270140E+01

16 -25.980469
28 -19.039398 21.097260 6.699724E-01 2.841818E+01
20 -6.482110 35.369690 1.802651E-01 3.595876E+01
22 -12.0005:8 35.537201 3.199396E-01 3.750873E+01
24 -19.411072 34.196762 4.936458E-01 3.932185E+01
26 -11.175798 40.430679 Z.664Z75E-01 4.194685E+o1
^a -2.34983 46.851273 4.998907E-02 4.690991E+01
30 -48.028412 25.t04819 8.854744E-01 5.424031E+01
32 17.93:896 57.511246 -2.979321E-01 6.0C48Z3E+01
34 -6.9533391 138.83:23:4 5.000774E-02 1.3cC563E+02
36 -6.

7
42161 135.219193 4.5!04^7E-02 1.353 7ZE+02

38 -7.37Z443 147.433505 4.9Z593E-02 1.476676E+02
40 -13.777969 146.527$7a 9.36167ZE-02 1.471742E+02
4Z -17.14,822 116.658e15 1.45337ZE-01 1.179114E40Z
44 -24.610794 145.730350 1.66465SE-01 1.47843:E*02

46 -63.770187 139.704300 4.152SOCE-QI 1.535706E+02
48 -19.269455 217.055723 8.842374E-02 2.179094E+02
50 -18.678070 217.723923 8.547390E-0Z 2.185236E*0Z

52 -13.009518 Z59.879e33 4.999717E-02 2.6005IE*02
54 -13.408503 267.829590 5.000093E-02 2.681650E+02
56 -14.761139 295.238525 4.993496E-02 2.956072E+02
58 -14.871689 297.1113:8 4.999170E-02 2.9748-E+02

60 -16.123550 322.178223 4.998C90E-02 3.Z25813E+02
62 -18.711029 373.754395 4.999975E-02 3.742224E+02
64 -18.953688 376.566406 5.034a64E-02 3.770447E+02

THE FOLLOWNG ZEROS MATCHEO POLES AND WERE ELIMINATED IN THE ABOVE LISTS

e -1.1766090 23.5027618
4 -6.8707829 137.243713

6 -6.8957291 137.739944

a -7.3594780 146.595718

10 -14.9596624 298.e18348
12 -15.2212658 304.044189
14 -15.5341244 310.316162
16 -18.6623230 372.779541
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The x23 spillover effects are small, and if residual modes are included

and accounted for with a dc correction, the low-frequency effect is also

small.

3.4 Discussion

For purposes of controller design, the dynamics of the M2V2 space-

craft were modeled by a 44-mode state space model. As a starting point,

this model can be assumed to be an accurate representation. Then, one

control option is the optimal regulator discussed in Section 3.2. The

regulator meets 2E performance requirements with minimum control cost.

Its deficiencies are dimension, and control spillover into modes 23, 26,

28, 29, and 30. The discussion in Section 3.3 motivates an alternate con-

troller design (Eq. (49)) which is a synthesis of transform, singular

perturbation, and optimal linear feedback ideas. The performance cost

associated with this alternate is higher, but it is of dimension 22 in-

stead of 88, and the excitation of modes 23, 26, 28, and 30 is dramati-

cally lower. The closed-loop poles of this controller and an x 1 , x2 , x3, 4

plant are given in Table 14.

The 44-mode model is, in fact, not a complete representation of

the M2V2 vehicle. If distributed mass and stiffness are acknowledged,

then high-frequency residual modes must be accounted for. In theory,

both the regulator and the reduced-order design can be made asymptotically

correct by subtracting a dc residual correction from the system measurement.

In fact, this procedure is more valid for the reduced-order design because

a frequency separation can be identified.
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Table 14. Closed-loop transfer characteristics, slew command to slew
response for Xl, x2, x3, x4 plant model, modified controller,
(only 20 x3 states included) (sheet 1 of 2).

-------------- UNiGUE POLES----------------

S-PLANE

NUMBER REAL IMAG DAMPING FPEQUENfCY

1 -1.012940
2 -1.0C5191
3 -1.000743
4 -11.76SE16
5 -6.378666
6 -12.244S.5
7 -10.:05933
9 -11.521297 1.143831 9.951079E-01 1.157794E+01

11 -12.427792 1.004272 9.967509E-01 1.246830E#01
13 -1.137719 22.723770 5.000474E-02 2.2752:3E+01
15 -1.238T47 22.6674E0 5.456723E-02 2.270129E+01
17 -8.325666 22.057739 3.531312E-01 2.35766cE+01
18 -25.933C63
20 -29.033757 4.677201 9.87276CE-01 2.041301E+01
12 -18.97Z261 21.2a4848 6.66Z:24E-01 2.847437E+01
24 -2i.155253 33.931843 . 478 E-C1 3.74Q2Z!E+01
26 -17.793549 35.343033 4.496790C-01 3.956c.E.01
28 -12.02329 35.532256 3.203376E-01 3.753Cz5E+01
30 -6.433103 35.34166 1.8031;0E-01 3.59535!E+01
32 -1i.85131'8 39.739105 2.857?03E-01 4.1463i7E O1
34 -20.121520 40.692683 2.413762E-01 4.193256E01
36 -2.345333 46.851039 4.99031E-02 4.690974E 01
38 -6.953493 138.832217 5.000496E-02 1.39056:E+02
40 -6.743121 135.2118048 4.980661E-02 1.353!61E+02
42 -7.30596 147.426270 5.000034E-02 1.47610cE+02
44 -18.347483 146.26%669 1.244607E-01 1.47415qE+02
46 -22.091125 145.535660 1.500728E-01 1.47ZC027E02
48 -24.125163 146.664932 1.623105E-01 1.4 63595.02
50 -22.371307 211.545.89 1.051635E-01 2.127235E+02
52 -15.372473 219.6;5892 6.9a0091E-02 2.202330E+02
54 -13.014043 259.648&33 5.000003E-02 2.60:0z5E+02
5f -13.4CE873 267.C293B0 5.0C006E-r2 :.61 F37+C2
58 -14.76:45 4  2%5.z:5z54 4.9997Z68-02 2.5553+2
60 -14.874912 297.126.4!5 4.999995E-02 2.974¢c58 02
62 -16.131378 322.224121 4.9999988-02 3.26277E+02
64 -18.711212 ----- ---.------- U.

66 -18.826568 376.067333 5.000438E-02 3.7653S3E.02
68 -23.537050 469.644043 4.999033E-02 4.70231CE 02
70 -Z

4
.165168 477.&37158 5.05952E-02 4.7247CE+02

72 -31.522554 539.871094 S.830136E-02 5..C71CE+02
74 -26.5424;9 57Z.176514 4.633C65E-02 5.727917E+02
76 -27.664230 607.903076 4.S4605i8-C2 6.055312E02

THE FOLLOWINS POLES MATCHED ZEROS AND WERE ELIMINATED IN AEOVE LISTS

NU"EER REAL IMAGINARY

2 -1.1766090 23.5027618
4 -6.8957253 137.739807
6 -6.8707829 137.24'111
8 -7.3588905 146.597519

10 -14.9596577 298.8188.8
12 -15.2212582 304.044189
14 -15.5341005 310.315674
16 -18.6623230 372.779541
18 -27.1470642 542.287109
20 -29.1354828 552.672607
22 -30.3554840 606.320557
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Table 14. Closed-loop transfer characteristics, slew command to slew

response for xi, X2, x(3, X4 plant model, modified controller,

(only 20 x3 states included) (sheet 1 of 2).

------------- -VNIlUE ZEPOS ---------------
I -I.0C5238
3-1.C20746
3 -10.015799

5 -11.7C4855 1.117005 9.954774E-01 1.175805E#01
7 -12.43;054 1.115681 9.959326E-01 1.245914E+01
9 -5.327583 6.3:7348 6.441139E-01 8.2718C2E+00

11 0.905S04 6.610687 -1.361941E-01 6.67Z2a6E+00
13 -1.137522 22.7^4045 4.999546E-02 2.275250E+01
15 -1.235771 2^.667511 5.4S6834E-02 2.270132E+01
16 -25.q81216

is -18.975922 ZI.:40570 6.662331E-01 2.84841E+01
:0 -6.4P3232 353b4300 1.803,29E-01 3.595346E+01
zz -12.023262 35.55Z948 3.203561E-01 3.753093E+01
Z4 -19.409,21 34.Iq6930 4.936200E-01 3.932138E+01
26 -11.176941 40.432022 2.664447E-01 4.194S44E01
8 -2.344932 46.651,73 4.993915E-02 -.690991E 01

30 -48.032059 25.10z:40 8.855086E-01 5.4C4234E+01
32 17.452667 57.507030 -Z.979984E-01 6.024415E+01
34 -6.053?58 13B.S32355 S.C00749E-02 1 .3 00563E+02
36 -6.743133 135.Z11C33 4.9S067CE-02 1.3560E+02
38 -7.37,'16 147..33535 4.99Q573E-C2 1.476677! 02
0 -13.777=,8 146.5144:0 9.3,5507E-0: 1.471 O:E+02

(. -17.165115 116.6;,C549 1.4559,4E-01 1.173q e +02

44 -24.61S522 145.7342Z2 1.665735E-01 1.477097E802
46 -63.C455S6 140.04q118 4.148039E-01 1.53S1565+02
48 -2:.371918 211.548S74 1.05160SE-01 z.Iz7'z5E02
53 -15.372672 :19.695C53 6.980151E-02 2.202331E+02
5z -13.C09515 ^59.879SS3 4.999716E-02 2.60Z0518E0z
54 -13.403455 Z67.829346 5.00003SE-02 2.681646E+02
56 -14.761032 z95.z3555 4.99346ZE-02 2.956072E802
58 -14.871675 297.111323 4.999165E-02 2.97483ZE 02
60 -16.123535 322.175223 4.995256E-0Z 3.ZZ5513E+02
62 -18.7110:9 373.7543;5 4.999975E-C2 3.74::E+02
64 -18.CS4787 376.567139 5.03514;E-02 3.77045:E402
66 -23.507019 469.64,443 4.999026E-02 4.70231'E 02
68 -24.1661Z2 477.e371583 5.050-',3E-02 4.7244723402
70 -31.5CZ5£9 539.-34473 5.e_5!21E-02 5.4075^7E+02
7- 57,.1767r5 4.613 3-C2 5.727;ZCE+0Z
74 -27.67o,41 j07.9177^5 4.53534E-02 o.C5547 E#02

THE FOLLOWING ZEROS MATCHED POLES AND WERE ELIMINATED IN THE ABOVE LISTS

2 -1.1766090 23.5027618

4 -6.8957300 137.739544
6 -6.8707e29 137.Z43713
8 -7.3586877 146,597519
10 -14.9596615 298.818548
1 -15.2"12658 304.044189
14 -15.5341024 310.315674
16 -18,6623230 372.779541
18 -27.147064, 542.287109
20 -29.1354675 552.672607
2z -30.354840 606.320557
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CHAPTER 4

SUMMARY AND SUGGESTIONS FOR
FUTURE WORK

The contribution of this research is a candidate reduced-order

control architecture for application to lightly damped, flexible space-

craft. The resulting controller is attractive in terms of dimension,

performance, and stability, but there are areas where further investiga-

tion is necessary. The intent of this chapter is to highlight key

points in the theoretical development of the candidate architecture, and

to indicate assumptions, limitations, and areas of concern.

The plant of interest is specifically a distributed stiffness,

distributed mass, flexible, lightly damped spaceborne structure with

six rigid-body degrees of freedom. The deformations of the structure

are assumed to be small and elastic. Within these constraints linear

theory applies, and the system response can be described by a separable

partial differential equation (PDE) in space and time. If modal co-

ordinates are used, and a third assumption, "modal damping", is made,

then the solution to the PDE is

00

q[[,t] = i 4 i;i (50a)

where

+ 2iii + Wii 2 F[y,t] dy (50b)

S
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m. = f P dy (50c)

S

F[x,t] is the force input to the system and can be selected to control

q[y,t].

For purposes of this research, the control design objective is to

regulate pointing and to add damping to those structural modes which

impact system performance. However, before discussing the controller,

several comments are appropriate.

(1) The simple form of Eq. (50) is due to two assumptions:

linear structural theory, and a viscous approximation

for structural damping. These assumptions are basic

to the work of this text, and if they are not valid

the results presented here may not apply.

(2) Equation (50b) is a semiinfinite set of second-order

differential equations which describe the dynamics

of the modal amplitudes. In reality, this set will

be truncated; a limitation due to the state-of-the-

art in structural modeling. The truncated descrip-

tion is accurate at low frequencies, but becomes in-

creasingly inaccurate at higher frequencies. (23)

(3) The eigenfrequencies A. are densely spaced for a1

structure, with the potential for multiplicities

of four or greater. In general, there will be no

evident frequency separation between high- and low-

frequency eigenvalues. The mode shapes *i are

functions of spatial variables only.

(4) The time response of any particular modal coordinate

&i depends on the spatial and temporal characteristics

of Fly,t]. The spatial characteristics govern the

amplitude of response through the factor f i . F[X,t] dy.
S
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The temporal characteristics of F determine the actual

response dynamics. If F is periodic in time, then the

X. response can be described with a Bode plot. In this

thesis, point actuators were used- either axial member

actuators, or CMG torques. For this special case, the

spatial characteristics of F are determined by the actuator

locations, and by the way the m controls are coupled

together.

m

f F y, t) dy = IYEK] UK[t]
S k=l

where

m = the number of actuators.

If the control law u[t] is chosen to be a feedback signal (for

all the advantages that feedback gives), then two bodies of control

theory are available: classical and optimal.

Classical theory is based in the frequency domain and presents

the designer with a set of powerful scalar tools to shape the frequency

characteristics of input/output paths. Given a modal description of

a system, the designer may phase-stabilize, gain-stabilize, notch-filter,

cross feed inputs and outputs, or put dynamic compensation in the for-

ward or feedback paths. The flexibility allowed by classical theory

is both a strength and a source of criticism. Classical designs are

nonunique and depend heavily on the experience and capability of the

designer.

In contrast to classical techniques, optimal theory provides a

feedback design which is fixed in configuration-a cascade of regulator

gains and an optimal estimator. The gains of the regulator and tie
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dynamics of the estimator can be uniquely selected to minimize a weighted

cost function of mean-square input and mean-square state deviations.

Knowledge of the system eigenspectrum is not needed in the design.

Both approaches (classical and optimal) have their strengths, but

in the spacecraft context neither is adequate. Classical theory is not

tractable for systems with large numbers of inputs and outputs. Optimal

theory can handle the multiple-input/multiple-output problem, but re-

quires that the dimension of the controller match the dimension of the

plant. This is clearly not feasible.

The control design approach which is developed in this thesis

borrows classical ideas: Chapter 1 discusses categorizing modes with

the intent of treating them differently in the design process and

Appendix A develops input/output transform theory, which is a linear-

algebraic extension of crossfeed. These ideas are blended with a

reduced-order optimal regulator estimator to make up the candidate

architecture discussed in detail in Chapter 1. The philosophy is

to use the regulator within the bandwidth, to use the input and output

transforms to decouple x2 and x3 states, and to use a singular pertur-

bation correction to account for the high-frequency x4 states.

From a fundamental point of view, categorizing modes and using

different techniques to account for them allows the designer to use in-

formation he might otherwise discard. Transforms, for instance, exploit

spatial information. The advantages of this control design approach are

illustrated in Chapter 3. Reduced-order designs are exhibited, which have

near optimal performance and which are stable when tested against an evalu-

ation model.

There are areas of concern, however. One serious issue that must

be faced is that of the design sensitivity to parameter variations
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(robustness). Ideally, a reduced-order controller should be insensitive

to both the order reduction scheme and to the parameter changes within

the retained model. This area has not been completely explored in this

research. Two points can be made, however.

(1) At high frequencies, eigenvectors are less sensitive to

parameter variations than their corresponding eigenvalues

(see Appendix G).

(2) Small changes in a transform correspond to small changes

in zero locations. Recall that a transform will place

zeros on top of poles of suppressed modes. If the trans-

form is perturbed, these zeros move smoothly in the fre-

quency plane (see Appendix A, F-8 example).

The insensitivity of spatial information and the smoothness of zero

movement are indications that using transforms may be a robust-order

reduction scheme.

A second concern is the effect of measurement noise. Designs

in this thesis are deterministic and output transforms look attractive.

If measurements were noisy, an alternate set of conclusions may be

reached. The concern is not that V will have dramatically different

noise characteristics than y, but that the covariance of an [A, T3CI]

observer will be larger than the covariance of a [A, C] design.

Future work is certainly needed in the two areas just discussed.

In addition, there are two other areas that may prove interesting.

Appendix A indicates that transform capabilities are enhanced if trans-

forms are given memory. This extension parallels the classical idea of

a crossfeed filter. Then, Appendix C discusses making an adaptive

transform. An algorithm is presented, and it is illustrated that when

system outputs are run through a fast-Fourier transform (FFT), and the

results are arrayed spatially, that mode-shape information can be con-

structed. This is a potentially powerful idea. An issue which remains

is the impact of noise on the Fourier coefficient values.
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CHAPTER 5

CONCLUSIONS

A new controller design methodology for application to flexible

structures has been developed. This investigation shows that the spa-

tial shaping of system inputs can effectively reduce the excitation of

a defined subset of modes. When the subset is chosen to create a fre-

quency separation between controlled and residual modes, a reduced order

regulator can be used to control the performance-related modes. A dc

correction term in the regulator measurement equation will adequately

prevent the residual modes from causing instability.

The reduced order design methodology has been applied to two

plants: the F-8 aircraft and the Draper Laboratory M2V2 space optical

satellite design. For the F-B, spatial shaping of the control reproduces

the rudder coordination crossfeed gains of a classical design. For the

M2V2 satellite, a 22-state reduced order regulator is shown to have

essentially the same quadratic cost as an 88-state, full-state feedback

regulator.
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APPENDIX A

TRANSFORM METHODOLOGY

Input and output transformations are integral to the control

architecture which is developed in this thesis. They are used to shape

the input and feedback control signals so that control authority is de-

livered only to the system modes of interest. The need to focus the

control effort in this way is indicated earlier in the text; the inter-

est here is in a detailed description of the transform methodology in

terms of linear algebra, frequency domain, and crossfeed control ideas.

A.1 Concept Motivation

For discussions in this appendix, the finite dimensional system

Z0' described by

Z0: = + u (A-l)

y 1 2[ C [ ?S

will be used. The block diagram description is given in Figure A-1.

The following definitions hold.
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XI = the vector of state variables that describes the modes

which have unacceptable dynamics or which are excited

by external disturbances. These modes are to be con-

trolled.

x2 = the vector of state variables that describes the modes

which have acceptable open-loop dynamic characteristics.

Equation (A-l) is in the block diagonal canonical form described in

Appendix E. In this form, there is no dynamic coupling between modes;

the coupling is solely in the input distribution and output matrices.

The intent is to provide a reduced-order feedback controller for

E0; specifically, a controller based on the dynamic description of the

]S states. The control law to be applied has the form

u = (A-2)

= All1 + B1u + S - Clxi ]  (A-3)

where K and G are gain matrices. Using this control law, the closed-

loop dynamics are given by

A 0+B1 K111

SA22 + B2K2

LGCl GC2 A11 + BIK GC1 Li (A-4)

Introducing the variable

e - -x (A-5)
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There are special cases, investigated by Balas (14) when a control

law based on only [All, Bi , C ] will be adequate. He defines the quantity

B 2K x as "control spillover"; the quantity GC2x 2 as "observation spill-

over", and proves the following results.

(1) If GC2 = 0 and B 2K = 0, the case of no observation 
or

control spillover, then x 2 and e will be uncoupled from

x and a controller based on [A ll B , C 1 will be ade-

quate. Because G and K will in general be nonzero, the

zero spillover condition typically occurs only when

C2 = 0 and B2 = 0.

(2) If GC2 = 0 and B2K 0 0, the case of only control spillover,

the x2 states will be excited by the controller, but the

System will be stable if [A BIK], A22, and (A11 - GCI ]

are all stable.

(3) If GC2 # 0 and B 2K = 0, the case of only observation

spillover, the time response of the xI states may be slower

than ideal (case a), but the system will again be stable

if [A11 - B1 K], and (A 1 - GC I are all stable.

The control methodology presented in this thesis was motivated origin-
allyby ala' dicusion(14)

ally by Bales' discussion. The transforms T 2 and T3 (see Fig-

ure A-2) were introduced to minimize the control and observation spill-

over. The objective is to choose T2 such that

BIT # 0, B2T = 0 (A-7)

and T3 such that

T3C # 0, T3C 2 = 0. (A-8)

If these conditions are met, then [All, BIT 2, T 3C] will be con-

trollable and observable, and there will be no control or observation

spillover from the controller.
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In addition to the transforms in the feedback loop, the methodo-

logy allows a transform on the commanded input. The purpose of this

transform is to shape the command to avoid exciting the x2 states.

This appendix discusses the solution of Eq. (A-7) and (A-8), and

comments on the existence of solutions. In addition, the state space

and frequency-domain interpretations of the transform cohcept are devel-

oped and related to classical crossfeed design concepts. Finally, the

use of dynamic transforms is discussed and applied to a design example.
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A.2 State Space Formulation

A controller configuration which provides authority to specified

states, and at the same time eliminates spillover, is clearly of inter-

est. Equations (A-7) and (A-8) offer one specification for such a con-

figuration. Alternatively, referring to Figure A-2, one can look at

three signal paths: r to x, u to x, and u to y. In each of these paths,

the transform, TI , T2, or T3 can be chosen to exclude information about

specified modes. The condition of zero observation spillover corre-

sponds to a y which contains information only about the x states. Simi-

larly, for zero control spillover from either the system input r, or

the feedback control u, the output of the r to x, and the u to x signal

paths must contain only x information. This alternate specification

will be used in the following discussions.

A.2.1 Transformation Selection

In this section the actual choice of the required transforms will

be addressed. The same methodology applies to the selection of all three

transforms; the discussions here will focus first on the choice of T2.

Then, the results will be generalized to also include T1 and T . Note
1 3

that T2 and T3 can be chosen independently, but, because T1 operates

on the closed-loop system, it may be coupled to the choice of T2 and T3 .

The following result applies specifically to the u to x signal

path.

Theorem 1:

Given a system 0, with xER
n and ucR

m

= Ax + Bu (A-9)

y = Cx
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Bii

Figure A-2. Block diagram description: input/output transforms.

where Eq. (A-9) is in the block diagonal form given in Appendix E, a

control can be constructed which does not excite r primary states where

Discussion:

Assum Eq. (A-9) is in a block diagonal representation of 0

and introduce as before the notation that _i represents the states to

be controlled, and 2represents the states to be suppressed. The sys-

tem Z0 can then be represented as

]= [+ [ 32

T2  A22 TT33C

where u = T (see Figure A-3).
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2dimn

dim ]= r

dim (u] = m

Figure A-3. u to x signal path.

To suppress x2 , a singular transformation T2 must be chosen such

that

B1T 2  5 0

B2T 2  = 0 (A-lI)

Depending on the dimensions r and m, a solution to Eq. (A-l)

may not exist. (See Bryson and Ho (2 4 ) Appendix A.)

(1) If r < m, at least one T2 exists although its form may

not be unique.

(2) If r > m, the condition B2T2 0 can only be met by T2 =0,

in which case B1T 2 = 0 also.
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From a geometric viewpoint, the rows of B2 and the columns of T2
r < rare contained in the space Rr. If r - m, R will in general be com-

pletely specified by B2 , and no nonzero vectors, V, will exist in Rr

for which B2 • V = 0. On the other hand, if r > m, the rows of B2 will
ronly span a subspace of R , and the columns of T2 can be chosen in the

null space of B 2. The dimension of the null space must be at least one

for Eq. (A-11) to be satisfied.

The focus of the theorem is on maximizing the suppressed subspace,

given a system dimension and a control dimension. This approach results

in a T2 which is an [r x 1] matrix, and in a scalar control u. Alter-

natively, if r and n are specified, then T2 can be chosen to be a matrix

of dimension mx[m - r], and u will have dimension [m - r] x 1. In this

case, the columns of T 2 are again chosen to span the null space of B2 .

Note though, that unless r = 0, T2 will be a singular transformation.

A.2.2 Dynamic Transforms

Theorem 1 establishes that for the system of interest, described

in Eq. (A-9), a control can be constructed which does not excite r pri-

mary states where r = m - 1. If there is a requirement to suppress

more modes than this, two options exist: the dimension of the control

vector can be increased by adding actuators, or dynamics can be intro-

duced into the input distribution network. The following theorem ap-

plies.

Theorem 2

Given the system E01 with xeR n and uERm, and described by Eq. (A-9),

a control can be constructed which does not excite r primary states where

r = p+m-i

where p is the order of the dynamics.
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Discussion:

As indicated in Appendix B, if the j input to a multiple-input/

multiple-output system is filtered by a first-order filter, two effects

occur: the filter dynamics must be added in parallel with the plant
.th

dynamics, and the input distribution vector associated with the j in-
n+ l th

put is rotated in R . If E0 is driven only by the j input, and the

input is filtered through a first-order lag with characteristics

[aft bf, cf], then Eq. (A-10) can be rewritten

2 = A2 a] 2 2j uj

f a f x f- bf -

Expressions for b' and b' are available from the results of Appen-
-ii -2jn

dix B. The key point here, however, is that in R , the vector

is linearly independent from b.. Using system linearity, and the-J

above result, it is possible to augment the input matrix of E0 with p

additional columns, where p is the number of parallel input filters that

are used. For example, for the two-input system

LZ] = LA 02] [;:] + [L 2[ 
(A-12)

2 0 A2 2!2 u2(
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shown in Figure A-4, introducing dynamics into the input distribution

network gives the augmented system

[1 0 oix b 1  2 ' 3uj
fj L o AfjLfj L o 0 B f uJ (A-13)

where

Af = At 2

Bf = bf 2

and

Fb11  1 l2 
B II=1 1 b--------

L:21 -t22 2J_

Note that the conditions

[b b B1I T 0-11 -12 -1 2

[b b B2 T 0A14
-21 -22 -2 2

can be met if r < p + 1. As discussed, T 2 is chosen in the null space

of [b b B1J.
-21 -22 -2
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U1

L
U2 2

TWO-INPUT SYSTEM

U1

U 2 2

Figure A-4. Two-input system with filtered inputs.

The geometric concepts which motivate the use of transform

dynamics are relatively straightforward. The actual choice of filter

eigenvalues is more involved. The filters must be chosen to give input

distribution vectors which are linearly independent. In addition, the

filter dynamics should be significantly faster than the dynamics of the

x, states. If these conditions are met, Eq. (A-11) can be satisfied

and the x2 states suppressed.

It should be stressed that for the multiple-input/multiple-output

case, the methodology outlined above will not yield a unique nor an

optimal design. Concerns which certainly would arise in any general

implementation include how to partition the dynamics among the cross-

feeds, and what values for the dynamics eigenvalues are really optimal

in some sense.
134



A.2.3 Generalization

Sections A.2.1 and A.2.2 focus primarily on the u to x signal path,

and on the selection of T . The extension to the u to y signal path is

straightforward. The rows of T3 are chosen to be in the column null space

of C . If the dimension of the output is Z, then q primary states can be

suppressed in the output where q = Z - 1. If dynamics are included in

the output transform, then the appropriate condition is q = Z + p - 1,

where p is the order of the dynamics. These results parallel the input

distribution results exactly.

The choice of T 1 is similar to the choice of T 2 in methodology.

The difference is that T1 should be based on closed-loop-system input

distribution characteristics. The procedure recommended is to choose

T2 and T 3 to avoid spillover, to choose G and K based on [A 1, BI T2

T 3C 1, and then block diagonalize the closed-loop system. This will

result in a description [ACL, BCL, C CL] that is in the block diagonal

canonical form used throughout this appendix. If the columns of BCL

which correspond to the x 2 states are identified, and designated Bthentherowsof canThiCL2'

then the rows of T 1 can be chosen in the null space of BCL2 . This

procedure will shape the command input so that x 2 is not excited.

A.3 Frequency Domain Interpretation

The system descriptions used thus far in this appendix, speci-

fically Eq. (A-l), (A-4), and (A-6), are state space descriptions in

the time domain. Additional insights are evident if Z0 is described

in the frequency domain, and the implications of the choices of TI ,

T2 , and T3 are discussed in terms of the effect on pole and zero loca-

tions.

Classical control theory, as originally derived, uses scalar func-

tions of complex frequency to describe system response characteristics.

The scalar formulation is natural for single-input/single-output plants,

but becomes cumbersome for multiple-input/multiple-output systems. The

theory has been reformulated in terms of vector functions of frequency,
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and is available in the literature. The vector formulation is appro-

priate for describing MIMO systems, although generalized definitions of

scalar concepts are required. Appendix D reviews the vector theory in

detail. Of specific interest here are the generalized descriptions of

poles and zeros, and the theorems which discuss the conditions under

which these quantities are invariant.

A.3.1 System Description

The system under discussion, Z0' is described in the time domain

by Eq. (A-l), which is repeated here for convenience.

[:;1 = E l (A-)

2 = 2 2 :

The poles of 0 are given by the eigenvalues of A22
1

specifically the poles are the set X_, i = 1 to n, where

tX.I - A] = 0 (A-15)

Because Eq. (A-l) is in block diagonal form, the solutions of Eq. (A-15)

are available by inspection.

The zeros of E 0 can be determined from the Rosenbrock Matrix

P[s]
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PIs] = (A-16)

C 0

The actual determination is computationally involved, particularly if
(25)

multiplicity of zeros occurs. Kontakos has developed a method which

derives the complete set of zeros from the minors of p[s]. The subject

is discussed further in Appendix D. Note, though, that while determin-

ing the entire set of zeros can be complicated, certain subsets of zeros

are more readily accessible. Output decoupling zeros occur at those

values of complex frequency s for which PIs] loses column rank. Simi-

larly, input decoupling zeros occur at those values of s for which P[s]

loses row rank.

A.3.2 Transformation Effects

If transformations are introduced into the command, feedback con-

trol, and output paths, the system Z0 will have the configuration shown

in Figure A-2. As before, it is convenient to focus attention on the

three signal paths u to y, u to x, and r to x. The discussion below

will evaluate their transmission-blocking characteristics.

The dynamic relationship between u and y can be described by the

linear system

= [All A+ [3 u (A-17)
2 0 A 22] [2]+ B 2

y [T3C1 TC 2

3 3 2
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The Rosenbrock matrix for this system is

P = [ sI - A2 2  02 (A-18)

T 3C1 T3C2

If T3 is chosed to satisfy Eq. (A-9) specifically

T3C 1  - 0 T3C2  0 (A-9)

then, the transfer matrix between u and y will be characterized by poles

at values of s equal to the eigenvalues of A and A 22, and zeros at

values of .i equal to eigenvalues of A 22. Note that choosing T3 to avoid

observation spillover, will, in effect, place output decoupling zeros

at the same locations in the complex plane as the poles of the modes

which are to be suppressed in the output.

The relationship between u and x can be described by the system

11 + uBT2 (A-19)

2 A221 [ B2 + 2]

The corresponding Rosenbrock matrix is

fI - A
1  0 -BT 2

P I]0 sI - A 22 B B2T 2  ( 0
22[s2 2 (A-20)

0 0

0 0
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If T2 is chosen to null control spillover, specifically to satisfy

BIT 2 # 0 B2T 2 = 0 (A-8)

then, P 2[s] will lose row rank at values of s equal to the eigenvalues

of [A 22. This indicates that the u to x transfer matrix will have

input decoupling zeros on top of the x2 poles, and therefore will pass

only x I information.

The analysis of the effect of T 1 on the transmission-blocking

properties of the rtt] to x path is more complex because T depends on

T2, T3 , K, and G.

For the special case where T2 and T3 are chosen to satisfy Eq.

(A-8) and (A-9) and the feedback loop is closed, then the dynamic

response of x to r[t] is given by:

A11 01 IT2 A

= 0 A 22 0 x 2 + B 2 r(t) (A-21)

0 0 Al1 - GT3C 1 0

The poles of this system are given by the eigenvalues of [A - B T 2K],

[A 22, and (A - GC I. The Rosenbrock matrix is

sI- A - B0T2K - BT2K - BITI

0 sI - A 22  0 -B2T 1

0 0 sI -Al1 + GT3C 1  0
P3 (s) =11 3

I 0 0 0

0 I 0 0

0 0 I 0

(A-22)

139



In this instance, the choice of T to satisfy

BT 1  0 , B2T 1 = 0 (A-23)

will place input decoupling zeros at values of s given by the poles of

[A 22] and the path r[t] to x will not pass x2 information. However, in

the more general case, where T2 and T3 do not satisfy Eq. (A-8) and (A-9)

exactly, Eq. (A-21) becomes

7A BT 0 + B TK Br T
11 1+l2K 1 2 jl Bil

2  += 2 +B2T2K E + B 2 r1. (t)

GT3C Al - GT 3 C11 +I 2L

(A-24)

and Eq. (A-22) becomes

sI - Al1 - BIT2K 0 1 1IT2K B 11

B 2T2K sI - A22 -B2T2K -B2T 1

0 - GT3C 2  sI - All + GT3C 0

P3 [s]=

I 0 0 0

0 I 0 0

o 0 1 .0

(A-25)

In general, satisfying Eq. (A-23) will not cause P3 [s] to lose

row rank. Instead, Eq. (A-24) must be block diagonalized. Then, as

discussed in Section 2.3, some number of the closed-loop modes can be
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suppressed by choosing the columns of T in the null space of the rows

of the closed-loop input-distribution matrix. This choice of T1 will

again place input decoupling zeros at the same locations in the complex

plane as the poles of the suppressed modes.

The discussion so far has assumed a state-space description,

Eq. (A-l), and focused on the characteristics of specific signal paths.

The description that is chosen uses modal coordinates as state variables.

This choice is convenient because it allows an easy identification of the

states which correspond to any particular mode; but it is not unique.

A possible concern involves the potential changes in the poles and zeros

of the signal paths with changes in state variable choice. Theorems

are given in Appendix D, which establish the invariance of poles and

zeros under state transformations.

A.4 Correspondance to Classical Crossfeed

The design objectives, as motivated earlier in the text, are to

produce a feedback controller with specified authority, which does not

excite the suppressed x 2 states, and, in addition, to shape the command

input so that again, only the modes of interest respond. Transforma-

tions T1 , T 2, and T3 have been introduced into the control configuration

specifically to meet these objectives. Appropriate transformations

exist within some constraints, as detailed earlier, but these trans-

formations will in general be singular. In effect, the inputs of a

multiple-input/multiple-output system are coupled into specific linear

combinations. The structure of each combination is chosen so that the

2 states will not be excited. In general, the number of appropriate

linear combinations is fewer than the number of system inputs. Simi-

larly, the system outputs are combined linearly to form observation

residuals which do not contain suppressed mode information.

The idea of coupling inputs to avoid exciting a mode, or the idea

of blending outputs to produce a feedback signal which excludes certain
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states, is not new. The classical concept of crossfeed in the input

or output has been used extensively. Two representative exar ',s are:

(1) Rudder Crossfeed.

Figure A-5 describes the F-8 lateral dynamics control

system. (26) Note the crossfeeds in the command, feed-

back control, and output feedback paths. Crossfeed

between aileron and rudder is provided to prevent a roll

command from exciting the clutch roll mode. Note, also,

the presence of dynamics in the crossfeed.

(2) Missile Pitch Control

Figure A-6 describes the pitch control loop for a

missile. (27 ) In the design shown, pitch rate output from

two locations are blended to suppress the first bending

mode information in the feedback signal.

The examples above are given to illustrate that the transform

concept, discussed originally in terms of spillover reduction, is just

a matrix extension of established design techniques.

A.5 Spatial Filtering

It is worth discussing the actual mechanism which is being ex-

ploited in the crossfeed or transform selection. Appendix E derives the

system equations of motion and contends that flexible systems are best

described by a partial differential equation in space and time. This

equation is separable, which uncouples the spatial and temporal descrip-

tions. When a designer controls the spectral content of a signal by

using a filter, say a notch filter, he is operating on the temporal char-

acteristics. By contrast, the use of crossfeed operates in the spatial

domain; shaping the signal in space. For the systems which are of in-

terest in this report, temporal and spatial methods represent indepen-

dent uses of the available information.
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A.6 summary

This appendix applies specifically to the linear dynamic system

E0 described by Eq. (A-i) and shown in Figure A-I. A methodology is de-

veloped which provides a reduced-order controller for Z0. This control-

ler is structured to meet two specific constraints.

(1) It provides feedback control for a specified subset of

the system states.

(2) It is decoupled from the remaining states.

Transformations on the system input and output are introduced, as

illustrated in Figure A-2. The decoupling mentioned above is achieved

by enforcing the conditions

BIT 1 0 , B2 = 0

B 2T 2 0 , S2T = 0

T3C 1 0 , T3C = 0 (A-26)

If solutions to Eq. (A-26) are available (the specific existance condi-

tions are presented in Section A.2.1), then the appropriate reduced-order

controller will only depend on [A l, BIT 2 ' T3CI]. This is the key re-

sult. Some additional comments are offered to provide insight into the

various implications of the use of input/output transforms.

(1) Structural response can be described by a separable

partial differential equation in space and time. In con-

trast to many control system filters, the transforms used

here operate in the spatial domain. in effect, decoupling

is achieved by a spatial shaping of the input and output.

(2) Picking TI, T 2, and T3 to satisfy Eq. (A-26) is equivalent

to

(a) Choosing T and T 2 in the row null space of B 2 and

choosing T3 in the column null space of C2 .
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(b) Specifying that the zeros of the r[ti to x, u to x,

and u to y, cancel the poles which correspond to x2.
(14)

(c) In Balas' terminology, nulling control and ob-

servation spillover.

(3) The transform concept is a vector extension of classical

crossfeed techniques.

(4) If the dimension of the system input and output are speci-

fied, there are simple limits on the number of x 2 states

from which the controller can be decoupled. If dynamics

are used in the crossfeeds, which in effect makes the

transforms specified functions of time, then the number

of decoupled states can be expanded in direct proportion

to the order of the dynamics.

An example--the design of an aircraft ;udder coordination

system-is included at this point to illustrate the transform concept

and methodology.

A.7 Design Example

This design example is intended to illustrate the major points

which are detailed earlier in this appendix. The aircraft was chosen

as an appropriate plant for three reasons.

(1) It is of relatively low order.

(2) It is a multiple-input system.

(3) Classical design analyses are available to use as a comparison.

An actual aircraft flight controller can be quite complex; the discussion

here will be limited to the design of a rudder coordination system. This

system is of particular interest because the rudder coordination crossfeed

has traditionally been used to prevent a roll command from exciting

oscillatory modes.
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A.7.1 Aircraft Description

The lateral dynamic response of an F-8 to aileron and rudder inputs

is given by Eq. (A-27). This equation is written in body axes and is

valid for small perturbations from straight and level flight. The body

axis frame has its x axis inclined to the trimmed velocity vector by the

angle = 7.75'. The nominal flight conditions are altitude = 20,000 feet,

and Mach = 0.56. The state variables are sideslip, B, roll angle ', which

are taken about the aircraft x axis, body axis roll rate, w , and body axis

yaw rate wz"

Aircraft

F-8

At Mach = 0.56, 6706 m altitude

(0 = 7.750

Lateral Equations

A x + B u (A-27)
--c - c--

where

xa- U

z

0 1.0 0.1361 0

0 -2.625 1.91 -29.8
A =

c
0 -0.0759 -0.426 2.65

0.0555 0.1359 -0.9974 -0.2173
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0 0B Lari= 27.0 6.13
1.42 -3.55

0.002315 0.0422

Eigenvalues

-1.9826

-2.856 ×10 - 2

-6.2855 10- I ± 2.35 j

Aircraft lateral dynamics are characterized by three response modes:

(1) The role subsidence mode governs the aircraft response to a

pure roll input.

(2) The spiral divergence mode is a very slow, often unstable

mode. If it is unstable the resulting motion is a combination

of increasing yaw angle and increasing roll angle, and

finally a high-speed spiral dive.

(3) The dutch-roll mode is an oscillatory mode, in sideslip,

yaw, and roll which is lightly damped.

Aileron and rudder inputs each excite all these modes. The pole

zero plots of the significant input-output transfer functions are shown:

aileron-to-roll angle (see Figure A-5), aileron-to-roll rate (see Figure

A-b), and rudder to sideslip (see Figure A-7). Note that in the aileron

transfer functions (see Figure A-8), a pair of complex zeros nearly can-

zels the oscillatory poles, while in the rudder transfer functions there

is nuo cancellation, and the residues associated with the dutch-roll n)de

-an be expected to be large.
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A.7.2 Controller Configuration

The lateral controller presented in this section achieves two

objectives.

(1) It adds damping to the dutch-roll mode to improve the air-

craft disturbance response.

(2) It couples the rudder to the aileron through a dynamic

crossfeed to prevent the dutch roll mode from appearing

in the response to a roll command.
(26)

The baseline controller was designed by Whitaker, and is shown

in Figure A-Il. Yaw rate feedback, S z, is used to add the required oscil-

latory mode damping. The crossfeed gain SCF, and the crossfeed-filter time

constant, TCF, are chosen to place the complex zeros of the aileron-to-roll

angle transfer function at the same location in the complex plane as the

poles of the dutch-roll mode. Figure A-12, shows the design parameters,

SWz, SCF, and TCF, in the structure of a state space description. A key

point that is evident here is that changes in SWz will change the system

A matrix, and therefore can be expected to influence both pole and zero

locations. By contrast changes in S will change only the B matrix, and

hence should only affect zero locations.

The influence of Sz SCF and T on the closed loop system char-
C CF (26)

acteristics will be presented two ways. First, the results from Whitaker

will be duplicated; then, an alternate design based on transform techniques,

will be presented. The two methods produce identical results.

A.7.3 Classical Design Analysis

The analysis presented here duplicates the results obtained by

Whitaker.(26) The influences of Swz, SCF , and TCF are investigated

parametrically, and presented in terms of changes to the poles and zeros

of the aileron-to-roll angle transfer function. Recall that the two

objectives of the design are to add damping to the dutch roll, and
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then to specifically suppress the effect of this mode in the roll response

to an aileron input. In the complex plane, these objectives correspond to

moving the aircraft oscillatory poles to the left, and then cancelling

them with complex zeros, Figures A-13 to A-20 summarize the key parametric

results. Specific effects that should be noted include the following.

(1) The effect of crossfeed with no yaw feedback and no crossfeed

filter (see Figures A-13 and A-14). The crossfeed gain, SCF,

affects only the B matrix, and therefore the system poles stay

at their open-loop locations. The zeros do move, and cross-

feed can be chosen to put the complex zeros close to, but

not on top of, the oscillatory modes.

(2) The effect of yaw feedback to the rudder with no crossfeed

(see Figures A-15 and A-16). Yaw feedback causes both the

zeros and the poles to migrate. Increasing the feedback gain

adds damping to the oscillatory mode, but also increases the

separation between the dutch-roll poles and the complex zeros.

The increase in separation increases the residue associated

with this mode, and adversely affects the roll angle response.

(3) The effect of crossfeed with the yaw damper loop closed (see

Figures A-17 and A-18). The yaw damper gain is chosen to give

adequate damping; then rudder crossfeed is added. The tra-

jectory of the complex zeros misses the pole location by a

wide margin.

(4) The effect of crossfeed dynamics with the yaw damper loop

closed (see Figures A-19 and A-20). This case is identical

to the case just discussed, except that a lag filter, TCF = 0.25,

is added to the crossfeed. Note that a crossfeed gain can now

be selected so that the complex zeros nearly cancel the damped

dutch-roll poles.
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STATE SPACE EQUATIONS 6a

0 CROSSFEED GAIN +z

* NO CROSSFEED FILTER* NO YAW FEEDBACK

S SCF = 0.3, 0.6, 0.9

0 0

AIRCRAFT: A c  br
0 0

0 0
x =x

-1. I I

i -25.0 I -25.0I_ ,___ __

ba  0

(A-29)

SCF X 1 1.0

SCF X 25 25.0

0 0

VARIATION: NO CHANGE IN A- SAME POLES, ZEROS CHANGE

Figure A-13. Effect of crossfeed with no yaw feedback and no

crossfeed filter-state space equations.
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15
" NO CROSSFEED FILTER
* NO YAW DAMPER

10

z

1.5

POLE - 1.0
-25.0

ZERO
-23.5

.5

I II I, I I I I 1 1 I ~ I_ I I I I

-2.5 -2.0 -1.5 -1.0 -. 5 0
REAL

Figure A-14. Aileron to roll--zero location change with crossfeed.
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0 NO CROSSFEED

STATE SPACE EQUATIONS 6 P 0
P-x

e YAW DAMPER cr z
SR3

AIRCRAFT: A. abr

So~z71 j-1 -

IS 25, 1 1
-25.0 -25.0 IL..... L

I I

VARIATION IN A MATRIX:

CHANGE IN BOTH POLES & ZEROS

+ ,(A-30)

0 I 1.0

- -I- - -

0 I 25.0

Figure A-15. Effect of yaw feedback to the rudder with no
crossfeed-state space equations.
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SNO CROSSFEED OR CROSSFEED FILTER

ao

2.5

* 0

-25 -Z -1.5-1.5

REAL

Figure A-16. Aileron to roll angle pole--zero location chay/ge
with yaw damper gain.
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0 NO CROSSFEED FILTER
STATE SPACE EQUATIONS 0 YAW DAMPER GAIN = 0.45

0 CROSSFEED
WITH YAW DAMPER 6R

AIRCRAFT Ac

I 0.45 I -1.0I I

I-11.25 1 -25.0 I -25.0 I

L~ --_-

b

+ U (A-31)

S .0I 1.0

SCX25 250

VARIATION: NO CHANGE IN A: SAME POLES, ZEROS CHANGE

Figure A-17. Effect of crossfeed with yaw damper

loop closed---state space equations.
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15
* YAW DAMPER GAIN = 0.45
" NO CROSSFEEO FILTER

Z5

1.0

0.5

-25 -20 -1.5 -1.0 .-as 0
REAL

Figure A-18. Aileron to roll angle--zero location change with
crossfeed gain.
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* CROSSFEED FILTER TCF = 0.25
* YAW DAMPER GAIN 0.45

STATE SPACE EQUATIONS a
a x

CROSSFEED WzWITH YAW DAMPER R"- '' ,-- -.

CROSSFEED FILTER

AIRCRAFT: Ac  b

x x

I 0.45 I -1.0 1.0
- i - 1

11.25 I I -25.0 I -25.0 I 25.0

-4.0

+ u (A-32)

i 1.0

I 25.0

4 xSC

VARIATION: NO CHANGE IN A: POLES REMAIN THE SAME, ZEROS CHANGE

Figure A-19. Effect of crossfeed dynamics with yaw damper

loop closed-state space quations.
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3.5

* YAW DAMPER GAIN = 0.45
" CROSSFEED FILTER TIME CONSTANTTCF 0.25

-3.0

ao

1.5

+

20

1.5

1.0

- 0.5

-2.5 -20 -1.5 -1.0 -0.5 0

REAL

Figure A-20. Aileron to roll angle--zero location change

with crossfeed gain.
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Figure A-21 is a composite map, in the complex plane, of the

migration of the poles and zeros of the aileron-to-roll angle transfer

function with design changes. The parameter values SW  = 0.45,

SCF = -0.55, and TCF = 0.25 were selected as design values based on

this analysis. The corresponding poles and zeros are shown in Figure A-21.

The aforementioned trends were obtained from numerical pole zero

analyses of Eq. (A-27), with, of course, the appropriate parameter values.

This is, in effect, a trial-and-error method, which, though adequate for

this example, would become inefficient if multiple crossfeeds, or multiple

filters were required. Alternatively, once the yaw damper gain is selected,

the system equations could be recast in root locus form, with the crossfeed

gain as the parameter [26]. The resulting locus of zero locations would

be identical to Figure A-21. This formulation is particularly nice because

the crossfeed filter can then be designed, using standard root locus com-

pensation techniques, to make the locus pass through the dutch-roll pole

locations. This technique gives the crossfeed parameter values S = -0.55

and 'CF = 0.263. Again, however, if multiple crossfeeds, or multiple pole

cancellations are required, this method becomes cumbersome.

It is interesting at this point to look at the closed-loop state

space equations. If the appropriate parameter and gain values are sub-

stituted into Eq. (A-28), the numerical state space description is given

by Eq. (A-33) in Figure A-22. This form can be block diagonalized [see

Appendix E] which results in the Eq. (A-34) in Figure A-23. The closed-

loop system eigenvalues are evident along the diagonal. In addition, note

that the aileron input to the oscillatory dutch-roll mode is almost nulled.

A.7.4 Transform Methodology Analysis

This analysis is presented to illustrate the transformation

methodology. As noted earlier, the parameters of interest in the rudder

coordination design are the yaw damper gain, and the crossfeed gain and

time constant. The focus here will be on the crossfeed design. S , the
z
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3.5

3.0

2.5

2.0

1.0

®ZERO MOVEMENTWITHSCF

B POLE MOVEMENT WITH w 0.5
ZERO MOVEMENT WITH w

ZERO MOVEMENT WITH SCF; Swz = 0.45

® ZERO MOVEMENT WITH SCF; S~ = 0.45, "CF 0.2 5

-2.5 -2.0 -1.5 -1.0 0.5 0
REAL

SCORRESPOND TO CLASSICAL DESIGN

Figure A-2l. Composite map of pole/zero changes--aileron
to roll angle.
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STATE SPACE EQUATIONS

CLASSICAL DESIGN

YAW DAMPER GAIN = 0.45

CROSSFEED GAIN = -0.55

TCF = 0.25

0 1.0 0.1361 0 0 0 0

0 -2.625 1.91 -2.90 0 6.13 0

0 -0.0759 -0.426 2.65 0 -3.55 0

0.0555 0.135 -0.997 -0.217 0 0.0422 0 x

0 0 0.45 0 '-1.0 0 11.

0 0 11.25 0 t-5. T-. i 2 5.0

0 0 0 0 I 0 0 '-4.0

0 i o

27.0 0 0
1.42 0I

+ 0.002315', 0 u (A-33)

0 I 1.0

0 2.5

-2.2 0

Figure A-22. Numerical state space description--classical design.
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STATE SPACE EQUATIONS

CANONICAL FORM
YAW DAMPER GAIN = 0.45

CROSSFEED GAIN = -0.55

T'CF = 0.25

23.19
- I-- - -I

1-0.877

1-2.80'

-0.025181P

I-1.189 1 2.182

L 2.182 i -1.189

2.94 34.84

-0.25569 ' 2.4045

6.3911 I 2.2399

+ -0.69199 -0.01411 (A-34)

-2.2 0

1-0.0510 052

0.1208 I 1.6074

Figure A-23. Numerical state space description --canonical form

classical design.
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yaw gain, will be taken as Sz = 0.45-the same value used in the earlier

analysis. The crossfeed parameters are to be chosen so that the dutch-

roll mode is suppressed in the system response to an aileron input. The

appropriate system functional block diagraun is shown in Figure A-24.

The first step is to put the system state space description in

block diagonal canonical form. This particular form is useful because

the system response modes are not coupled in the A matrix. Equation (A-35)

in Figure A-25 gives the appropriate canonical expression. This equation

is a block diagonalization of Eq. (A-28) with Swz = 0.45, SCF = 0, and

TCF =0.

The mode of interest is the dutch-roll mode. Ideally, the choice

of the crossfeed gain and filter time constant will place zeros directly

on top of the dutch-roll poles in the aileron-to-roll transfer function.

Equivalently, one can view the choice of crossfeed parameters as making

the dutch-roll mode uncontrollable from an aileron input.

In the block-diagonal form, the system modes are dynamically

decoupled and the state vector can be partitioned into

x= (A-36)

where x2 describes the aircraft oscillatory mode dynamics. Let

-2= (A-37)

Then, the dutch-roll dynamic description can be written

+ U (A-38)

[2 -218 1.189] x2 1.590 1.6071
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STATE SPACE EQUATIONS

CANONICAL FORM

" YAW DAMPER
" NO CROSSFEED

. 19 . -- - - -

-00.877 5

I 2.182 I -1.189
L ....- I -.

-1.0545 T 34.84

1.438 1 2.4045

2.2829 -2.2399
+ U (A- 35)

-0.6998 -0.01411

0.221216 i_ 1.8052
----------------1.5904 1.6074

Figure A-25. System state space equation - block diagonalization.
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If the identifications

t 0.221]12 [1.805 adB-1 -2 = , and B 2  L- -2 j

1.590j 
1.607

are made, where b is associated with the aileron input, and b 2 with the

rudder, then the design objectives can be reduced to finding a transform T

such that

B2T = 0 (A-39)

There is no nonzero T that meets this condition because the rows of B2

span R 2 . This is consistent with Figure A-14, where it is evident that

crossfeed alone will not produce the required locus of zero locations.

If no solution to Eq. (A-39) exists, dynamics can be added to the cross-

feed; specifically, since there are two controls, and two states to be

suppressed, the order of the dynamics must be at least 1; a lag filter.

If a filter is added to the rudder input (see Appendix B), an

additional, linearly independent system input vector is formed. Of

interest here are the elements of this new vector which corresponds to

the dutch-roll mode, designated b". With this new input

2

1a

6 R ' =SYSTEM

6R  +-
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Eq. (A-38) becomes

Xl 1.189 2.18 x I  
a

xU2 -2.18 -1 .18 j x
L6 R

The input vector b' is a function of TC and b If b is regarded as a
2 -2 CF -2 -2

vector in R2 , then b is the result of rotating 2 through the angle

tan
-  -Z

+ I/CF

and changing its magnitude by

1

where

2 2 2

-1.189

6 = 2.18

These relations are motivated and developed in Appendix B.

In this example, the vectors 1' b', and b define the way an

input is distributed between the states x1 and x2 , which describe the

dutch-roll mode. Thus, x1 and x2 can be taken as phase-plane coordinates,

and in this plane, the state vector rotates at the damped natural fre-

quency, 2.18 radians/second. It is perhaps intuitive that if an input

were filtered then its representation in the phase plane might change,

and the time history of the distribution of energy between states might

be effected. The change in angle and the change in magnitude mentioned

previously are the description of this effect.
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Given Eq. (A-40), a transform T' can be found which is orthogonal

to the two row vectors of [bI ,b' b ]. This transform is a vector in

R3 , and will couple together the aileron, rudder, and filtered rudder

input. The details of this approach will not be pursued. Instead,

because a direct comparison with Whitaker's design is desirable, a

transform T will be found in R2 which couples together the aileron and

the filtered rudder input. This requires that, for the system

x 1.189 2.18 'a]

+ (A-41)

x2  2.18 -1 .189i 2 [
r

the condition

[b, b9)T = 0 (A-42)

must be met. There are two inputs, so the only solution to Eq. (A-42)

1
will occur when b and b2 span R, that is, they are linearly dependent,

or more simply, parallel.

Note that

F0. 2211
I = .1 1.605 L 7.9180 (A-43)

1.590

b2 = .6075] 2.417 L 48.3160 (A-44)•11607j

For b and b 2 to be parallel, b2 must be rotated through -40.3980, which
-1 -2 -2

implies

-Il -
tan- = -40.398* (A-45)

a + l/T CF

174



Substituting for a and , this results in

T = 0.2666

and

.= 37]+ 2.6952 L 7.91870 
(A-46)

L2.6696J

Equation (A-41) becomes

.2212 0.3713 6 (A-47)

12 18 -1.189- [ 2 2 .5904 2.6696 ][r

T is chosen to satisfy

[b b-]T = 0 (A-48)

or

T = [-0.595751 (A-49)

T is orthogonal to LO.2212 0.3713J and Ll.5904 2.6696j; the first

element of T was chosen to be 1 to allow a direct feed through of aileron.

With the crossfeed closed, Eq. (A-47) becomes

[-1.189 2.18 x 0

Kl] [1218 c9][:] +[l~a(A-50)
x2- -2.18 -1.189 -x21 0
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The corresponding system equations are

-23.1]

x -0.02518 x

-.189 2.18

2.18 -1.189

2.94 34.84

-0.4324 2.409

7.550 -2.239

+ -0.6913 0.01411 u (A-51)

2.2315 0

0 1.8052

0 1.6075

Note that the dutch-roll mode is not controllable by an aileron input.

The poles and zeros of Eq. (A-51) ara given in Table A-1.
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Table A-i. Poles and zeros of system equation (sheet I of 2).

PROGRAM: POLZERO TIME: 11:26:35.9 DATE: 01/03/80 (80/003)
REVN# 2, MOD# 00.

* COORDINATED AIRPLANE

INPUT QUAD = S100

NX = 9
NU z 2
NY Z
T= .0

TRANSITION MATRIX A

1 2 3 4 5
1 0.0 1.0000000000+00 1.3610000000-01 0.0 0.0
2 0.0 -Z.625000000D+00 1.910000000D+00 -2.9000000000+01 0.0
3 0.0 -7.5900000000-02 -4.2600000000-01 2.650000000D+00 0.0
4 5.5SO0000000-02 1.359000000D-01 -9.974000000D-01 -2.1730000000-01 0.0

5 0.0 0.0 4.5000000000-01 0.0 -1.0000000000+00
6 0.0 0.0 1.1250000000+01 0.0 -2.5000000000+01
7 0.0 0.0 0.0 0.0 0.0
8 0.0 0.0 0.0 0.0 0.0

9 0.0 0.0 0.0 0.0 0.0

6 7 8 9
1 0.0 0.0 0.0 0.0
2 6.1300000000+00 0.0 0.0 0.0
3 -3.550000000D400 0.0 0.0 0.0
4 4.2220000000-02 0.0 0.0 0.0
5 0.0 1.0000000000+00 0.0 0.0
6 -2.5000000000+01 2.5000000000+01 0.0 0.0
7 0.0 -3.7503000000+00 0.0 0.0
8 0.0 0.0 0.0 0.0
9 0.0 0.0 0.0 0.0

INPUT MATRIX B

1 2

1 0.0 0.0
2 2.70000 0000+01 0.0
3 1.420000000D+00 0,0
4 2.315000000D-03 0.0
5 0.0 1.0000000000+00
6 0.0 2.5000000000+01
7 -Z.2342530760D00 0.0
8 0.0 0.0

9 0.0 0.0
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Table A-I. Poles and zeros of system equation (sheet 2 of 2).

OUTPUT MATRIX C

1 2 3 4
1 1.0000000000+00 0.0 0.0 0.0 0.0
2 0.0 1.00000000013+0 0.0 0.0 0.0
3 0.0 0.0 1.000000000D+00 0.0 0.0
4 0.0 0.0 0.0 1.0000000000+00 0.0

6 7 8 9
1 0.0 0.0 0.0 0.0
Z 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0

TRANSMISSION MATRIX 0

1 2
1 0.0 0.0
2 0.0 0.0
3 0.0 0.0
4 0.0 0.0

OUTPUT POLES P200 COORD AIRPLANE

NP 9
T= .0

NUMBER REAL IMAG

1 -3.750299E+00
2 0.0
3 0.0
4 -2.421546E-02
5 -8.866659E-01
6 -2.786338E+00
8 -1.191922E+00 2.IS1013E+00
9 -2.318723E+01

OUTPUT ZEROS Y2000101 AILERON TO ROLL

NZ = 7
GAIN = 27.1931

NUMBER REAL IMAG

1 0.0
2 0.0
3 -7.766400E-01
5 -1.199915E+00 2.153101E+00
6 -2.369135E+01
7 -3.628448E+00
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APPENDIX B

EFFECT OF FILTERING A CONTROL INPUT

The system (I), m inputs--n states, can be represented in block-

diagonal form

x = X+ Bu (B-1)

where

A1  2

A = A.1

A 2,

A = K or F 1

B =[b, b ... b 1; b. is a column vector
- 2 -n --
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If a lag filter of the form O is added to the j th input

an augmented system description is required.

A~ ~~~ b , [ ?f +r . 0 l.. b+1  (B-2

f] = [ [ [(Bb2b

Equation (B-2) can be put in block-diagonal form using the transformation

= K](B-3)

where

T [ 0 1]
V-f]is the eigenvector associated with the filter eigen-

frequency Af =W.
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The inverse of T is

T _ = [ 1 0-f]

and

Abb b b .. b 

=+ I I u
1- 2 .. (B- 4)

- 0 0 0 I 0 0

B.1 Expression for Vf

[Vf is an eigenvector of the matrix A

A=[A b,]

which implies

A -r (B-5)

Let

b1 . V1

V 2

bj

b. = and Vf = V- -3 b . . -f

b. V
nj n
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Due to the near block-diagonal form of A, a set of uncoupled
th

equations for the elements of Vf can be written. If the i eigenvalue

is real, then

X.V. + b.. = -wV. (B-6)
1 i 1 1

or

-b..

V. = -i-1 (B-7)X . + W
I

Combining Eq. (B-7) with Eq. (B-4) yields the relation

b.. = b.. (B-8)
X.+ W l1

th __

Recall that the filter on the j input is of the form W Also,
S + w

note that there is an apparent singularity at W = -A. This singularity

is not real. Equation (B-6) is valid only for cases where V is linearly

independent of the other eigenvectors of A; a condition that is not

guaranteed if w = -.

If the ith and [i+l] th eigenvalues are complex conjugates, the

correct expressions are

Vi + 8iVi+ + b. = -V.

V +igVi+l +b i+l, j Wi+l B9
-ii+ ci. + b+ = -WV.(B9

or

v, = - 1 [(. + w)b. j - Bibi

V = - [Bibij + (ai + w)bi . I (B-10)
i+l Q ± I +Jf,

where
2 2

182



Then, using Eq. (B-4), the relationship for bi and bi+l j is

__ __ f (B-li)b [(+wj
bi+l, j k Q Q i+l,j-

The matrix

[ - 1

is of the form

[Cos e sin:1
-sin 0 Cose

a matrix which rotates a vector through an angle 0. Making appropriate

identifications, the vector bij , by use of a filter on the j input,
Ib i+l, jl

will have a change in magnitude of - j, and will be rotated through

an angle tan -.+w

The information available in Eq. (B-5) and (B-li) can be compactly

presented as

-i
b. [wI + A] b. (B-12)
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B.2 Siumary

th
Filtering the j input produces the following results.

(1) The system dynamical matrix is changed only by the addi-

tion of the filter mode. It remains block-diagonal.

(2) Only the input distribution matrix column associated with
th

the j control changes. Equations (B-8) and (B-i), or

Eq. (B-12) describe these changes as a function of filter

break frequency.
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APPENDIX C

ADAPTIVE TRANSFORMS

C.1 Introduction

This appendix discusses the adaptive shaping of a system output

to control the modal information content. The discussion focuses on the

output characteristics of the linear, time-invariant, plant Z0f

0 = Ax + Pu x[O] = (C-l)

y = CX + V- - -m

where

x E R, uR R, Y e RZ

Modal coordinates are used as state variables.

v is a vector of white, zero mean, measurement noise.

The state vector x can be partitioned

x= [:] (C-2)

Then Eq. (C-1) becomes

[0A] + [ (C-3)

1852] A22
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= CIlI + C2 2 + m

where

x E Rq

-2

Two output quantities can be defined

x1 1 c12 (C-4)

1-2 CI2 (C-5)

Z0 is shown in block-diagram form in Figure C-I.

An output transformation T3 can be introduced. T3 is a singular

transformation which operates on the output I to produce a signal y.

The selection of T3 is discussed in detail in Appendix A. The following

results are of interest here.

(1) If f > q, then a T3 exists which excludes all x2 infor-

mation from y.

(2) T3 satisfies the equations

T3C 1  0, T3C 2 = 0 (C-6)

(3) If T exists, and is implemented, it corresponds to3

placing the zeros of the u to y transfer function at

the same complex plane locations as the poles of [A22

(4) T3 operates on the spatial characteristics of Z0 to

separate the x and 2x states.

This appendix assumes that t > q, and that a transform T 3, has

been implemented. If the system model, Eq. (C-i), corresponds identi-

cally to the true system, then T3 can be chosen to satisfy Eq. (C-6)

exactly. However, model errors or system parameter changes may lead to

the condition T3C 2 # 0, a condition Balas calls observation spillover.
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The following distinctions are useful at this point.

(1) Subscripts: I IT implies quantities which accurately

describe the system of interest. [ are model values,
m

and may be subject to errors.

(2) Transforms:

(a) T3 is a controller quantity which was chosen to

satisfy

T3CI 4 0 ; T[C2 = 0 (C-7)

3 1lm 3 2 M

Spillover occurs specifically when

T3 [C2] T I 0 (C-8)

The rows of T3 can be designated r., j=l, Z-a,

such that

LrJ[;j (C-9)

(b) T3 is a transform which, in fact, satisfies the

true conditions

T3 [CI]T 0 T3[C2]T = 0 (C-0)

The row vectors of T3 are designated r., j=l, -q,3 J

so that

T3 (C -If)

1r
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T and T3 are related byT3 3

T3 = T3 - T (C-12)

where LT3 reflects the error in T . If the row vectors of .T3 are des-

ignated E., j=l, t-q, then Eq. (C-12) can be written as a set of e-qJ
equations.

r = r. - E. j = 1, 1 - q (C-13)J 3

Observation spillover has a negative influence on system per-

formance, and an adaptive scheme which minimizes spillover in real time

is of obvious interest, The system implications of spillover are dis-

cussed earlier in the text; the discussion here focuses on estimating

the row vectors E., j=l, Z-q. If [E.] is known, then T can be updated,
3 3

and the revised transform, T 3, will satisfy Eq. (C-10) as desired. The

actual algorithm is based on geometric arguments in vector space, so

these will be discussed first. Then, the actual adaptive scheme will

be presented, along with an illustrative example.

C.2 Geometric Interpretation of Transform Error

The signal of interest is the output of 70..0'

= [C1 I + [C 21Tx2 + Vi (C-14)

The design model approximates [C IT with [C I m and [C with

[C2]m" -2 is assumed to be Gaussian white noise, and is therefore char-

acterized on a per-element basis by a mean and a variance. The dimension

of y is known exactly, Z, as are the dimensions of X1 , n-q, and x2, q.

The work here assumes that Z > q. If this is true the columns

of [C 2m span a subspace of R[ . This subspace is designated S. Simi-Simm

larly, the columns of [C 2 T will span a subspace T.
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Recall that a transform 7 s introduced, which operates on y

to produce a signal 7. System rtquirements dictate that T should be
3

chosen so that y contains only x information. In equation form

y = T 1 T1+ 3 21T-2 3-'n (C-15)

Note that the system requirements will be satisfied if

T 3(C 2 = 0 (C-16)

However, in the design process, T3 is picked to satisfy

T [C2] = 0 (C-17)
3 2 m

If there are no modeling errors, then these two relationships

will be identical. If there are modeling errors, then Eq. (C-16) will

not be satisfied exactly by T . At this point, it is useful to inter-

pret the problem geometrically. As discussed in Appendix A, satisfying

Eq. (C-17) is equivalent to picking the row vectors of T ; i.e., r.,
3 3

j=l, t-q, in the nullspace of S. In effect, each r. is orthogonal to
3

all the column vectors of [C 2 . If S and T do not coincide exactly,m"

then the r. will have components in T. It is these components, in fact,
-3

which imply that

T 31C2 T  # 0 (C-18)

and if these components were nulled, then the updated T would be the3

desired transform. This discussion can be summarized in the following

points.
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(1) If T3 is chosen to satisfy Eq. (C-17), and there are

modeling errors, then T3 will be inaccurate.

(2) If T3 is inaccurate, the inaccuracy will correspond

exactly to the projection of T3 on T.

(3) (2) implies that the error in T 3 is contained in the sub-

space T. This is an important idea.

If the notation introduced in Section C.1 is used, then we can

note that T3 is in the null space of T by definition. Since the error

in T3 is in T then the relationship

S. E. = 0 (C-19)3 3

holds for all j. Using Eq. (C-13), this becomes

(r. - E.) E. = 0 (C-20)
3 3 3

Geometrically, Eq. (C-20) corresponds to requiring that the rows of the

updated transform to be orthogonal to the estimates of the errors in the

transform rows.

C.3 Adaptive Loop Implementation

The adaptive loop which is presented here is based on the geo-

metric insights discussed in Section C.2. It uses the measured system

output y and the initial estimate of T3 to derive the true transform T3'

The true transform satisfies two conditions, which can be written

in terms of the row vectors of T3 1 namely

rE[C I T 0 j = i, - q <C-21)

r [C 2 = 0 j = 1, e - q (C-22)

Equation (C-21) implies that the dot product of r. and any column of3

ICI] T is nut zero, while Eq. (C-22) specifies that the dot product of
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(4) Once [E.1 is known, then T3 is formed from
3

r. = r. + E. j = 1, e - q (C-26)
) J 3

These steps are now discussed in detail.

C.3.1 i Processing

Recall that y is the output of the linear system E

y = Cx 1 +C +v (C-27)

where

Y E R, x 2 E Rq  e > q

Z 0 describes the time variation of the state vectors x1 and 22 and

v is white zero mean measurement noise. The column vectors of C2

span T, where t is a subspace of R The objective of this section is

to define a filter which, when driven by y, will produce an t dimen-
i th- i

sional vector output g i , valid at the i time instant, where 9 is

contained in T.

The signal y is a vector function of time. The elements of y

are phyaically the outputs of individual sensors. Restricting attention

to a specific single-sensor output y[t], we note that over the interval

[0,T], the function y[t] can be represented by the complex Fourier series

y(t] = C neJn0t (C-28)
n-
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where

WO = 27r/T

T = period (seconds)

n = harmonic number (integer)

C = Fourier coefficient
n

T -Jnu0t

C - y[t]e 0 dt (C-29)

0

This representation assumes that y[t] is known and well behaved every-

where in the interval [0,T]

If y[t] is sampled at a uniform rate, the sequence y~il can be

represented by

N-I 2nni

y(i) = F[n]e j  N (C-30)

n=0

where

AT = sampling time (seconds)

i = denotes the i th sampled value

N = total number of sampled points in [0,T]

where

{2w
1N AT

t i AT
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and

N-I .27rni

F(n) ( yile- (C-31)

i=0

Equation (C-31) is known as the discrete Fourier transform, and hard-

ware is available which accepts sampled values of a signal, and which

outputs F[n].

i R.e,
If we generalize Eq. (C-30) to the vector case, where y E R

then we get

N-1 .2wni

Y E F[nle N (C-32)

n=O

where the elements of Fin) represent the values of F[n] which corre-
i

spond to the appropriate elements of y

If the x2 states are oscillatory and lightly damped, a set of

associated characteristic frequencies Q F a = 1, q/2 can be identified.a
Then C can be approximated by

2"rni. 2n i
1 k

Ci - Y2  = Fn Ile + ... F[n k]e (C-33)
-l k

where the parameters n are all integers such that the quantities N A-
k NA

fall within some small neighborhood, [a - C n a + C a, of the
characteristic frequencies, for a = 1, g/2. This approximation may,

in fact, be poor, with the error coming from the following two sources.

(1) The Fourier representation of any individual mode, based

only on series terms within [W - e, S1 + e] , may be inadequate.
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(2) The values of F[n] will reflect the measurement noise v .
-U'

The development of a Fourier representation of y[t] is to some

extent a digression. Recall that the basic intent of this section is

to define a filter which, when driven by y[t], will produce a set of
1 k it dimensional vectors [1 .9 where each i is in T, and where the

set of vectors i =I,2. = q spans T.

The Fourier discussion was introduced because, in cases where y

is a sufficiently accurate approximation of C 2 2, then all the vectors

F ink I will be in T and the set of F [nk], where the nk are defined

for Eq. (C-33), will span T. This is a useful idea because it allows

a transform error estimate directly from the spatial distributions of

the Fourier coefficients, and the inverse transform (estimate of C? 2 i)

does not need to be calculated. The issue of the error in this proce-

dure remains.

In general, if the x and 22 states are interlaced in frequency,

then the errors may be large. However, for the special case where x1

and x2 are separated in frequency, and where specifically 22 falls in
i

the band [wl, w2], 92 can be formed

n2 .27ni

= F[n]e (C-34)

nn 1

where
= [ N AT.

nI  = integer [w -N --T

n = integer w N AT

If N and AT can be picked so that w N AT/ and w N AT/ are in fact in-
tegers, and there is no noise, then 91 will correspond to CA exactly;

and Flink], k = n,...n 2 will span T. For applications in this thesis, the

set of vectors F [nk I are used to drive the transform error estimates.
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The presence of measurement noise will introduce a random error

to each element of F[n]1n = nI, n2. The magnitudes of these errors

can be described statistically based on knowledge of the noise charac-

teristics. This thesis does not treat this area definitively. Instead,

it is argued heuristically that the effect of noise is small for the

case of real interest--the case of an x2 mode which is excited, and

lightly or negatively damped. Here, the structural amplitudes, would

tend to be significant and the resulting signal-to-noise ratio would

be large. Additionally, spectral filtering, which is normally intro-

duced to account for discrete effects in the FFT may have desirable

noise suppression qualities. In the illustration of the adaptive

process, which is presented later in this appendix, a Hanning window

is used to process the output before the FFT is calculated. However,

a detailed investigation of the effect of noise was not undertaken.

C.3.2 Estimation of E.
j

The estimation algorithm which is developed here is driven by

the signal and produces an estimate of the error in T3 , that is an

estimate of [E.]. Specifically, it is assumed that a set of measure-
1 k iments ty .. y I is available, where each y is in the subspace r. These

i
y may be spatial arrays of Fourier coefficients. In any event, the

relation

<Jr. - Ej], i> = 0 (C-35)

must hold for all j, j = 1, t - q, and all i. In effect, the estimation

problem reduces to finding the E., so that each quantity [r. - E.] is

orthogonal to the set of measurement vectors. The Gram-Schmidt formula-
tion provides an iterative method of finding the E.. Specifically, the

iteration

i+1  i iiE E. + Ky (C-36)
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where

0E
0  = 0
E -

i .2K. = <r.-Eiy>/1
K < - E y >/ Il

where

I I c> geometric mean

< > c> inner product

1 k
will converge to E. when {y ... y k span the subspace T. The term

i i i
<r. - E., y >y2. - -

I~iI 2(C-37)

i iis the orthogonal projection of r. - E. on y The algorithm assumes
J J - 1 i-i

that r, - El is orthogonal to the subspace spanned by {y ... y and
] ] Ei+l

then ensures that r. - E. will be orthogonal to the subspace spanned
1 i I i iby {y .. .y } by subtracting out the projection of r. - E. on y The-) J

Gram-Schmidt gain is optimal, but alternate gains are possible. Any
igain sequence G., such thatJ

G = Y.K1

0 < y. < 2 (C-38)
J

will converge. Convergence will be fastest for y close to 1.

C.3.3 Transform Update

If a converged estimate of the transform error [E.] is available,
3

then the output transform can be updated using the relationship

3 - T3 - [Ej] (C-39)
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Prior to taking this step, the calculated [E.] can be checked for con-
3

sistency. By definition, the true error associated with any r. mustJ
lie totally in the subspace T. It is, therefore, legitimate to require

that, at any step, the condition

T E. = 0 (C-40)
3

must hold. If the condition does not hold, then E. will have componentsJ
in the C1 space which can be subtracted out by

-i i - <rk ' EE> Fk

k Irkil (c-41)

where the k are the row vectors of the true transform T. In reality,k

the transform T will be unavailable for use in an algorithm. However,

the approximation

i
(r. E.) r.3 3 3 _I

Ir - Eti I(r IC-42)

will become increasingly good as the T components of Ei converge. ItJ
is suggested, therefore, that that equation be modified to

i i rk-E~

t =Ei <rk - Ek , Ek > (rk EkEi -Ei 
Yj--43

k Irk -kj 2  (C-43)

and that that equation be invoked prior to the actual update of the

transform T3 '
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C.4 Sumary

The intent has been to develop an adaptive scheme that corrects

the output transform T3 to account for system variations and model in-

accuracies. The particular scheme which is presented uses the measured-

system output to form spatial arrays of Fourier coefficients, which are

then used to drive an error estimator. The estimator itself uses geo-

metric concepts to ensure that the updated transform meets the required

conditions

T3 [CI] T  3 0

T3 C2] T  = 0

Alternate schemes are of course possible. Some of the strengths of this

approach include the following.

(1) Frequency information is used to check T 3, where T3 is

initially selected based on the system spatial response

characteristics.

(2) The Fourier coefficients are outputs from common, com-

mercially available digital processing elements.

(3) The use of nonlinear (Gram-Schmidt) gains in the estimator

aids convergence rate.

This scheme will perform best when x and x2 are in separate frequency

bands. Note also that in this special case, the scheme is insensitive

to the specific frequency characteristics of x2' The only value that

is needed with precision is wl, the lower bound of the x2 frequencies.
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There are issues which remain. Perhaps the most troublesome is

the treatment of measurement noise. For a discussion of noise effects
(29)on spectral estimates, see Kay. He also evaluates several noise

compensation schemes. Despite the issues, the idea that frequency-based

descriptions can be arrayed spatially and used to update input and out-

put transforms is significant. Two examples are included in this appen-

dix to illustrate that this spatial arraying can result in mode shape

estimates.

C.5 Examples: Mode Shape Estimates From Spatial Arraying of Fourier
Coefficients

For illustrative purposes, the horizontal solar panel vibration

modes (modes 4, 8, 10, 16, 17, 31, 32) were given a unit initial dis-

placement. The output of six solar panel sensors was monitored. The

placement of sensors is detailed in Figure C-3; the mode shapes of

interest are shown in Figures C-4 and C-5; and the output time histories

are given in Figures C-6 through C-9. In addition, mode shape values

at sensor locations are given in Table C-1. The objective is to derive

the mode shapes at the sensor locations using just the output time

histories. To do this, each sensor output was passed through a fast-

Fourier transform, and then the resulting coefficients were arrayed

spatially. This data flow is presented graphically in Figure C-10.

Power spectral density plots (PSD[n] = 2 x C[n] 2 ) indicate the variation

in the Fourier coefficients with sample frequency for each output.

These plots are given in Figures C-11 through C-16. There is strong

evidence of resonances in the data, as expected. The output of the fast-

Fourier transform (FFT) processors can be arrayed spatially; here a six-

element row vector is available for each n. Table C-2 is a printout of

all such vectors with lengths greater than 10-4 . The available vectors

are superpositions of modes 8 and 10 at 3.9 hertz, 16 and 17 at 21 hertz,

and 31 and 32 at 60 hertz.
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Figure C-3. Solar-panel output sensor locations.

The following points can be noted.

(1) The vectors which result from the spatial arraying of

Fourier coefficients are linear combinations of the made.

shapes which occur at the frequency of interest.

(2) If a transform T3 were chosen to exclude modes (8, 10, 16,

17, 31, 32), then the vectors of Table C-2, V., will meet
1

the criteria

T3 Vi = 0

(3) Frequency methods cannot separate the effects of two differ-

ent modes which have the same natural frequency.
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TIME RESPONSE
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0
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TIME RESPONSE
SOLRR PRNEL VIBRRTION

C

U]

A A AAA-~v VV - vvv v v V V,

00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40
TIME

In

.00 060 1.20 1780 24 0 00 3 60 4 .20 4.80 5.40
TIME )(10 - 1

0

'n

' O 0 60 1. 20 1.80 2.40 3 00 3. 60 4.0 80 5 4

TIME *10 - 1

Figure C-7. Example 1: output time histories (outputs 4 through 6).
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Figure C-8. Example 2: output time histories (outputs 1 through 3).
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Table C-I. True values of mode shapes evaluated at sensor locations.

Frequency
Mode (Hz) Sensors

3 2 1 4 5 6

4 0 0.1866 0.1399 0.0789 -0.0789 -0.1399 -0.1866

8 3.5 0.826 0.4067 0.0836 0.0836 0.4067 0.826

10 3.5 -0.8062 -0.3861 -0.0662 0.0662 0.3861 0.8062

16 21.8 -0.6034 0.5358 0.3618 -0.3618 -0.5358 0.6034

17 21.8 -0.6045 0.5884 0.3591 0.3591 0.5384 -0.6045

31 59.4 0.3422 -0.4003 0.6639 -0.6639 0.4003 -0.3422

32 59.4 0.3435 -0.4011 0.6676 0.6676 -0.4011 0.3435

The FFT/power spectral density software package, which was used
(28)

in the examples, was developed by Konigsberg. It includes a

Hanning window to account for the discrete effects and to enhance resolu-

tion.
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Figure C-il. Power spectral density plot of output , example 1.
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Figure C-12. Power spectral density plot of output 2, example 1.
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TEST 3

-a5-1

- 7- -6 -S - -AQI Z- I 10 I 2 31FFIEG HZI -LOG to

Figure C-13. power spectral density plot of output 3, example 1.
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Figure C-14. Power spectral density plot of output 4, example 1.
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Figure C-15. Power spectral density plot of output 5, example 1.
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Figure C-16. Power spectral density plot of output 6, example 1.
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A second test case was run where only modes 8, 16, and 31 were

excited. The time histories of the output are given in Figures C-17

and C-18. The output PSD calculations is given in Figures C-19 through

C-24. The spatial arraying of Fourier coefficients results in the vectors

given in Table C-3. In this case, there was no multiplicity among the

excited eigenfrequencies, and the output closely approximates the true

mode shapes.
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Figure C-19. Power spectral density plot of output 1, example 2.
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Figure C-20. Power spectral density plot of output 2, example 2.
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Figure C-21. Power spectral density plot of output 3, example 2.
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TEST 5
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Figure C-23. Power spectral density plot of output 5, example 2.
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Figure C-24. Power spectral density plot of outpu- 6, example 2.
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APPENDIX D

ZEROS OF LINEAR MULTIPLE-INPUT/MULTIPLE-OUTPUT SYSTEMS

The fundamental concepts of classical control theory--poles,

zeros, transf.r functions, frequency response--were originally expressed

in terms of scalar functions of a complex variable. Recent work has

generalized the scalar results to matrix functions of a complex vari-

able, and related the frequency response concepts to state-space

system descriptions. This appendix reviews the definitions and

theorems which are applicable to multiple-input/multiple-output systems.

The primary source of this review is MacFarlane & Karcanias. 
(30)

D.1 System Description

The systems considered in this section are assumed to be de-

scribed by

xt] = A xIt) + B u[t]

(D-l)
y[tJ = C x(t)

L[t] E Rn

u[t] S Rk

y(t] ERm

This is a restricted case; more general results are available which

allow y to be a function of the state, the control, and time derivatives

of the control.
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Taking the single-sided Laplace transform of Eq. (D-l) yields

s x[s] - x[O] = A x[s] + B u[s] (D-2)

y[s] = C x[s]

If the initial conditions are all zero, so that

x[01 = 0

then, the input and output vectors are related by

y[s] = C[sI - A) - I B u[s] (D-3)

The matrix

G[s] = CfsI - A] - B (D-4)

can be defined, and is commonly designated the transfer-function matrix.
(30)

Additionally, the system matrix, P[s], can be defined. Equation

(D-2) can be written

UsI - A -B s][0]
(CD-5)

:C ] u[s] YES)

Then P[s] is taken to be

P~sB (D-6)

C 0

Both G[S] and PIs) are useful in defining system poles and zeros, and

establishing the links between state space and frequency response de-

scriptions of system behavior.
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D.2 Definitions of Zeros

Zeros are characteristic of the way in which the system dynamics

are coupled to the environment in which the system is imbedded, and are

associated with specific values of complex frequency at which transmis-
(30)

sion through the system is blocked. In the literature, three inter-

related classes of zeros are defined.

(31)
D.2.1 System zeros

The system zeros are defined as the zeros of P[s]; those values

of complex frequency s = z. for which

-.I A -B1[o1i
] = [ (D-7)C0 g 0

where

u[tl = g exp Jzt] i [t3

l[t] = Heaviside step function

(30)
D.2.2 Transmission zeros

The transmission zeros are defined as the zeros of G(s); those

values of complex frequency s = z. for which1

C(z.I- A]- B = 0 (D-8)1

These zeros are physically associated with the transmission blocking

properties of the system. Equations (D-7) and (D-8) can be solved

directly from the minors of P~s] or G[s] using the method developed by
(25)

Kontakos.
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D.2.3 Decoupling Zeros(
31 )

Output decoupling zeros are defined as the values of complex

frequency s = z. for which the matrix1

P o0 
= 

I

C

loses column rank. Analogously, input-decoupling zeros are defined as

the values of complex frequency s = z. for which the matrix1

P[s] = z. A -B1

loses row rank. Input/output decoupling zeros occur at frequencies

where both P and P. lose rank.
0 1

D.3 Relationships Between Various Types of Zeros
(32)

Rosenbrock has established that the system zero definition

is the most general, and that the following relationship holds.

{system zeros} = (transmission zeros

+ input dedoupling zeros

+ output decoupling zeros}

- {input/output decoupling zeros}

He also has proven that if Eq. (D-1) is controllable and observable,

then there will be no decoupling zeros, and the set of transmission

zeros will be identical to the set of system zeros.

225

7



D.4 Theoretical Results

D.4.1 Invariance of Transmission Zeros(
34 )

Transmission zeros are invariant under the following transforma-

tions.

(1) Nonsingular coordinate transformations in state space.

(2) Nonsingular transformations of the inputs.

(3) Nonsingular transformations of the outputs.

(4) State feedback to the inputs.

(5) Output feedback to the rates of change of the states.

In terms of the quantities shown in Figure D-l, transmission

zeros are invariant under all choices of L and K, and all nonsingular

choices of T, G, and F.

Proof: (See Reference 34.)

+ -

Figure D-l. Summary of transformations under which

transmission zeros are invariant.
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D.4.2 Relation Between Decoupling Zeros and Controllability,

Observability

If a mode is uncontrollable, the real pole (or pair of complex

conjugate poles) associated with the mode in question will be directly

cancelled by an input decoupling zero, or complex conjugate pair of

zeros.

Proof: The proof treats the case of an oscillatory

mode. The arguments for a real mode are similar.

The system equations are given by Eq. (D-7). A

transform can be chosen (see Appendix E), which

allows the system equations to be written in block

diagonal form

x A + Bu
(D-9)

Y Cx

where

A 2  B 2

A A °°°°"n ° B X L , J

and

th
The i mode will be uncontrollable if B. = 0.I

Also, note that the matrix P.
1
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Pi= [s - M

will lose rank for the case when B. = 0, when

2 1
s = - w i ± 1 - 2w., which implies directly that

input decoupling zeros will exist which cancel
th

the poles of the i mode, Q.E.D.

If a mode is unobservable, the real pole, or pair of complex

conjugate poles associated with the mode in question will be directly

cancelled by an output decoupling zero or conjugate pair of poles.

Proof: The proof is the dual of the controllability/input

decoupling zero proof above. It invo' ,es relating
th

the conditions for unobservability of the i mode

to the frequency at which the matrix P0

P = [sI A]

loses rank.

D.4.3 Movement of Poles with Output Feedback

Poles that correspond to modes which are uncontrollable or un-

observable are not affected by output feedback.

Proof: The system described by Eq. (D-1) can be put

in controllability/observability canonical form (6 )
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1  -A A 0 0 2x l B -

-2 0 A22 0 0 2L 0

x 3  A A A 0 x 3  B3A31 A32 A333

_24_ 0 0 0 A44 -  04 I
(D-10)

y= C1  C2  0 0 -2

-3

x 4

where

the x 1 states = controllable and observable.

the x 2 states = uncontrollable but observable.

the x 3 states = controllable but unobservable.

the x 4 states = uncontrollable and unobservable.

The poles of Eq. (D-10) are given by the

characteristic equation

det [A 1] det [A 22] det [A 33 det [A44 = 0

If an output feedback law u = -Ky is used, the

closed-loop poles are given by

det [Al1- BKCI] det [A221 det (A 331 det [A44 = 0

Note that the poles associated with unobservable or

uncontrollable states are invariant for all choices

of gain matrix K, Q.E.D.
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If a system which is controllable and observable and which has

an equal number of inputs and outputs has output feedback of the form

u = -KIy

then, as K -) 00, a number of closed-loop poles equal in number to the

finite transmittance zeros will tend asymptotically to the zero loca-

tions, while the remainder will tend to infinity. (30)
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APPENDIX E

SINGULAR PERTURBATION THEORY

Singular Perturbation Theory is applicable to dynamic systems

which can be modeled by

x = f[x,z,u,t,] I

v9z = g~2,z,u,t,Vi] (E-l)

y = h[x,z,u,t]

where

p is a scalar p > 0

n r m
xE R, z R, uE , y E R

x and z are state variables associated with dynamic states; y is the

system output.

If the system of interest is linear and time-invariant (LTI),

Eq. (E-l) can be written

x = All x + Al2Z + BU x[0] = x0

P! = Ax21K- + A22z + B u z[0] = z0  (E-2)

y = C x + C 2z + Du

For applications in this thesis, the x states represent low-

frequency modes, the z states represent modes of higher frequency, and
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is the square of the ratio of the frequency of the fastest x mode to

the frequency of the slowest z mode.

Linear system theory provides the methodology to completely

assess the forced and unforced response and the stability of any system

which can be represented by Eq. (E-2). It is necessary, however, to

consider the entire [n + r] order system in pursuinc this assessment.

There are engineering motivations to develop appropriate reduced-

order representations of Eq. (E-2) for use in control system design,

particularly if the design requirements focus primarily on performance

in set frequency bands. In amplifier design, for example, low-, middle-,

and high-frequency models are typically used in designing to meet sinu-

soidal steady-state specifications. In this application, and others,

reduced-order models can introduce significant efficiencies into the

design process, and greatly reduce the complexity of the controller

configuration. It is important to note, however, that the reduced-order

model must be an adequate representation. There are numerous examples

in the control literature 35 ,36 ) which indicate that undesirable and

even unstable designs can result from heuristic order reduction schemes.

Singular Perturbation Theory offers a mathematically rigorous

approach for constructing an asymptotically correct reduced-order

approximation of Eq. (E-2). Specifically, the eigenvalues associated with

the slow behavior of Eq. (E-2) can be represented as a series expansion

2
X =' X + (E-3)

Formal results are available which investigate the asymptotic behavior
( 37)

of this series and establish that

0 X 0 (E-4)
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where the A0 are the eigenvalues of the system

x = All + AI2 + BIu

0 = A21 + A 22K +B2

Furthermore, for some neighborhood ji[,p 0 ], it is valid (38) to approx-

imate the unforced low-frequency behavior of Eq. (E-2) as

( -[A -A A- A Ix (E-5)
11 12A22A21 -

and the unforced high-frequency behavior as

A 22- (E-6)

Equations (E-5) and (E-6) are asymptotically correct reduced-order models.

They account for the coupling between low- and high-frequency modes, but

for the slow system, they treat the fast modes as dc values.

The work of Klimoshev and Krasovskii is key to the discussions

of this report, and is presented in the following.

Lemma (Klimoshev and Krasovskii (38)

For a system governed by

= All + AI2 z [0] = x0

A = 2 + A22- z[0] = -0 (E-7)

Let A A A A- A and A be stable matrices (all the eigen-
11 12 22 21 22

values of the matrices have negative real parts). Then, there exists a

positive number p such that for every W E [0,i 0, this system is asymp-

totically stable.
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For the cases of state or output .eedback control laws, and no-

control feedthrough in the output

= -K1 C1- K2C2- (E-8)

the closed-loop equations of an LTI singularly perturbed system can be

written

= [A - B K C Ix + [AI2 - B K 2C 2]z x(0] = x0

_ [A21 - B2KIC Ix+ [A22 - B2K2C 2z z[0] = z0 (E-9)

Equation (E-9) is of the same form as Eq. (E-7). Exploiting

this fact, the KK lemma has been applied to stabilizing feedback
(9) (40)

controllers, optimal regulators, (nd controller configurations

which include dynamics in the feedback loop. (10)

It is clear that the approximate models given in Eq. (E-5)

and (E-6) are strictly valid only for P = 0, and that asymptotic

stability conclusions based on these reduced-order models are valid

only for i E [0,p 1. A theoretical bound on pl' particularly as a

function of the system dynamical matrix, is not available in the litera-

ture. Numerical investigations have placed i in the 0.3 range for

specific problems. (36,40,41)

However, Mahapatra (42 ) has developed a bound for E[t], the error

in x as approximated by Eq. (E-5) due to treating the high-frequency

modes as dc. If the eigenvalues of A

A = (E-10)
A21/ 

A22/P
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are designated X., i = l...r, iA <j 2 < ... and are assumed
1 1 A2  ri andaeasue

distinct, then JiE[t] I is bounded by

IIE~t] 1< K [r - n / 2 + 2 1/2 (E1)

where

K = [I111  +_l JIBII]I

and u(t] is a step input of magnitude u0*

The error can be made small if

[r-n1 /2  r ~~ [ 2] 1/2 0 (E-12)
(r -n) I /  + 1 i /

1 1[i=n+l I

This condition is reached when n - r, an obvious point, or when the

neglected dynamics are very high frequency--in other words 1 - 0.

E.1 Application of Singular Perturbation Theory to the Space

Vehicle Problem

The singular perturbation formulation applied here is due to
(10)

Balas. He treats the specific case of controlling a system with

fast and slow modes where the full state vector is unavailable and must

be reconstructed from available measurements by a Kalman filter or a

Luenberger observer. In this case, the appropriate low-frequency

reduced-order model is

x_ = Al_ x+Bu_

y = CIX + Du (E-13)

where

Al = Al -A A2A22
11 A11 12 22 21
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-1B1 = B1 - A2B2

1, 1 2 A22 21-1Ci = Cl -C2A -A1

1 1 C2 A22 B21D = C1 -C2A-IB

A22 is assumed to have an open left-half-plane spectrum. Balas

establishes that the feedback compensator has the form

X [A 1 + B G -KC 1 -DG1 + Ky

u = G (E-14)

which accepts the system output y and produces a stabilizing control u,

and proves that if the system described by Eq. (E-9) is controllable

and observable, there exists a p , such that for all p E [O,w 1, the

gains G and K can be chosen so that the full system (Eq. (E-2) with

compensator feedback from a reduced-order observer (Eq. (E-10)) will be

stabilized, and the observer estimate will converge to the actual state

of the slow system.

The dynamical system of interest is summarized in Figures E-1

(configuration), and E-2 (the open- and closed-loop system equations).

The x states are to be controlled; the x actuator states, x s sensor

states, and x structural modes are higher frequency and are not

explicitly included in the controller design. The detailed development

of these equations is given in Appendix F.

Using Balas' notation, the following identifications can be

made.
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0~ < -4
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OPEN LOOP

xA 1  B1Ca I

, I Aa Ia aI I B

= BSC 1  As  BsC 4  -s +I I :r(+)

-4 I C A4  I

I AI+B 1 K A

I -GCj

CLOSED LOOP

* CLOSING THE LOOP INTRODUCES THE TERMS

I I I I
I I II
I I I

II I B K
I, I

I I-----------
I I I I

I I I I

I I G1C5  I

I I I I

Figure E-2. Control system equations.
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A A

a1 1

A = A BC A 1  [A1BCA BCA A -A BCA22 s s4 22 s s44 4a a s s s44

B 4Ca 0 A4  [ A4 IB4CaAa
1  0 A4  j

A 1 2  BICa  0 0

A2 1  = BCI

D = 0

Then the system model becomes

x = Al x+BlU
A11 x 1

y C ICX +Du (E-15)

where

-1Al = Al -A A22 A2 = AI
A11 A11 A12 A22 A21 1

-1
B = B -A A22 B = B1
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- -iCi = Cl -C2A22A2 = C1
1, 1 C2 A22 A21 1

- -i -14AIB
D = C -CA 2B 2 A B

1 2 22 2 4 4 4

Implicit in these relations are the assumptions

C A- B -I
aa a

C A- B -I
ss S

The compensator that Balas' theory suggests is

x = 1 + B1G - KC1 - KC4A BG + Ky

u = Gx (E-16)

for application to the space vehicle. This controller form is increas-

ingly valid as p gets small.

By contrast, a compensator which neglects the fast modes complete-

ly would have the form

x = [A1 + BIG - KC]x + Ky

u = Gk
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APPENDIX F

EQUATIONS OF MOTION

General formulations of the elastic equations of motion of a free

vehicle in flight consider a three-dimensional body with six transla-

tional and rotational degrees of freedom and acknowledge the distributed

nature of inertia, stiffness and damping forces. Vehicle motion and

deformation are described in terms of coupled partial differential

equations in space and time, and the appropriate boundary and initial

conditions. Simplifying assumptions, which decouple, linearize, or

discretize these equations, are justified for specific vehicles and sets

of initial conditions.

This appendix is included to detail the simplifying assumptions

which were made in this report, and to specifically exhibit the result-

ing vehicle equations of motion. Bisplinghoff and Ashley (43 ) derive

the forced and unforced response equations for a three-dimensional,

flexible, zero-damping vehicle. They use continuous representations

for space and time, and restrict their attention to the small-deflection,

zero-net angular-momentum case. These response equations are fundamen-

tal to this report, so this appendix begins with an outline of the

Bisplinghoff-Ashley derivation. Then the response equations are put in

state space form, and the effect of including damping is discussed. The

appendix also discusses the eigenfunction normalization convention and

presents the numerical state space descriptions of the satellite and

the F-8 aircraft.
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F.1 Coordinate Systems

The vehicle of interest is modeled as a three-dimensional elastic

body which is unrestrained in space. Referring to Figure F-1, the body

is allowed to assume small deformations with respect to the orthogonal

x-y-z axis system, a body fixed-axis system with its origin at the

vehicle center of mass.

R

rb X F
k'

X'

Figure F-1. Three-dimensional unrestrained elastic body.

Vehicle motions may also be described in terms of inertial co-

ordinates. The position vector r' is referred to an orthogonal-axis

system x',y',z' which is fixed in space. The body is allowed to assume

large rigid-body displacements with respect to this inertial system.

The vector r' is also referred to inertial coordinates; it represents

the position vector of the vehicle center of mass.

Two vector relationships are useful in describing vehicle motion.

The equation
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r r + r

where r is the particle position vector in the x-.'-z axis systeln, re-

lates motion in inertial coordinates to motion relative to the 'ehicle

center of mass. The second equation

r +=

where r is the position vector from the center of mass to a particle

in an unstrained vehicle, and where the vector q is an elastic deforma-

tion vector, relates deformations to the static equilibrium configura-

tion.

The developments in this appendix will use these coordinate

systems and position vectors.

F.2 Equations of Equilibrium
(4 3 )

If the body of interest, shown in Figure F-1, is acted on by

surface tractions per unit area, designated by the vector F, and body

forces per unit volume, designated by the vector R, then three vector

equations of equilibrium must hold.

(1) Force Equilibrium

dG
P = - (F-l)
- dt

where

P fffdV+ ffFdS

V S

dr"
0

G = M-
-- dt
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Mr fff r'dV

V

P is the resultant of applied forces, G is the momentum vector,

and M is vehicle mass.

(2) Moment Equilibrium

dH

L (F-2)-- dt

where

fff= R dIV +jff r xFdSH= fff 1 ff
v S

drH ]fff d-
V

L is the resultant of applied moments and H is the angular momen-

tum vector.

13) Elastiv: Equilibrium

r - ff • ao dV

V

+ff]f> [Fit[r - r I dV

V

wner

[r d -0 dr d,

'It ] = dt dt d d-

retters t,, iuantitles evaluated at the center of mass.
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r is the position vector to the point of application

of F.

r is the Maxwell second-order tensor of flexibility

influence functions.

These equations assume small deflections, which allows the use of linear

stress strain relationships.

F.3 Free Vibration

In the absence of external forces, the x-y-z system remains inert

and the simplified forms of Eq. (F-l), (F-2) and (F-3), which are appro-

priate for the free-vibration case, are as follows.

fff p dv =0 (F-4)

V dt 
2

dtfff r + aox2Pd (F-5)

dt2

1 ff
_-_ 0 -2 [V x r = ..-. dV (F-6)dt 2

The solution to these equations is assumed to be

q[x,y,z,t] = k[x,y,z]T[t] (F-7)

where ~jxyz] = x'y'zli + [x,y,z]~ + [xyz]k is an eigenfunction
- y z

in vector form which represents a natural mode shape, and Tit) is a

function of time.
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Equation (F-7) will be the solution to Eq. (F-4), (F-5), (F-6)

provided the following dynamic conditions hold

2
0 (F-8)

p[x,y,z] = !ff G[x,y,z ; ,T, ] [ ,n, 1pd~dnd (F-9)

V

where G is a second-order influence function dependent on system stiff-

ness, mass, and inertia properties. The exact relation is given in

Reference 43.

The unrestrained elastic vehicle has three translational modes of

zero frequency which can be represented by the vector forms

-# = ali

2 - b2j (F-l0)

=3 = ck

and three rotational modes, also of zero frequency, which are

4 = -zi + yk

5 = zi - xk (F-l)

6 -yi + X!

In addition, there are an infinite number of modes of finite

frequency defined by the solutions to Eq. (F-8) and (F-9). Each pair-

wise combination of these solutions satisfies the orthogonality relation -

ffi f j p dV = 0 i j (F-12)

V
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Note that the rotational modes are uncoupled. This is a result of the

assumption that internal angular momentum is small.

F.4 Forced Motion

The forced motion of an unrestrained elastic vehicle can be

described in terms of the natural vibration modes of the free vehicle.

As defined earlier, the displacement vector of a particle in inertial

coordinates is

r = + r (F-13)

where r = r + q

The elastic deformation vector q can be defined in terms of the free-

vehicle natural modes

q = :i±x,y,]i[t] (F-14)

i=l

The normal coordinates i and the vectors r and r are determined from

the equilibrium equations.

Equations (F-l) and (F-2) provide six scalar relationships which

define the translation and rotation of the x-y-z body axis system.

Equation (F-3) defines the deformation displacements of the vehicle

with respect to this axis system. Using Eq. (F-12) in Eq. (F-3) yields

21.) - i  
- [V • i(O)l x

= r • [E + r p dV + fffr F 6[r - rs] dV (F-15)

V V

247



Using orthogonality Eq. (F-l1) can be simplified to

MJj. + M.j Cj = B. [j = 1,2,... (F-16)

where

K=N f[!J 2 
dv

3 p

V

= fJ [F • dS

S

F.5 State Space Representation of Forced Motion Equations

If instead of _ being a function valued three vector, _ is taken

to be the vector of displacements at structural node points then the forced

deformation response of an unrestrained elastic vehicle to a single input,

as derived from Eq. (F-3), can be presented as

M + Kq = bu (F-17)

M and K are mass and stiffness matrices, b is an input distribution vec-

tor, and the dimension of q is three times the number of points used in the

analysis. Use of orthogonality, and the displacement representation given in

Eq. (F-12), allow Eq. (F-17) to be uncoupled and written as

(I] + ['w] = [- bu (F-18)I i x mi  --

or in terms of first-order differential equations, as

A1  b 1

A 2. x + b2 u (F-19)

A. b.
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[02 1 [Ai -1 0 i M

which is block diagonal.

F.6 Viscous Damping Effects

If viscous damping effects are modeled and included in the formu-

lation, Eq. (F-18) becomes

[I]K + m Cj + [-w2 [m u (F-20)

C is a matrix of damping coefficients. If C is a linear function of

either M or K, the term [mi]'C will be diagonal, and Eq. (F-20)

can be represented in state space by

-A1 "bl

A2 x + b2 u (F-21)

A. b.

0 1

A. = [02 B. = [1]
W -2S .. ]

This special case is called modal damping, and has as one consequence

that the system eigenvectors remain real, and the displacements remain
(44)

in-phase at all frequencies.

If [C] is not a linear function of [M] or [K], then[ mi..-c will

not be diagonal, and the scalar differential equations in . will be
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coupled. The cross-coupling terms will depend directly on the values

of the damping coefficients, and if damping is low, then a representa-

tion of the form of Eq. (F-21) may be approximately correct. However,

an exact damped system block-diagonalization transformation, valid for
(45)

arbitrary C matrices, is given by D'Azzo and Houpis. They show

that any dynamical system can be put in the canonical form

A 2  X + [ ] u (F-22)

where

A. A. b. = b. for real roots

1 0 0

A = [ Xl 1 b. =[ for repeated roots

0 0 A. i

and

= b =[b]

AI a b b2i

. =a + for conjugate roots

aA. =
1 J

The advantage of these canonical forms, Eq. (F-19), (F-21) and

(F-22), is that the modes are uncoupled dynamically, and the dynamic

response characteristics are immediately evident. The coupling has

shifted to the input distribution, and output matrices.
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F.7 Conventions

Normalization

(1) The mode shapes are determined only within an arbitrary

factor. A normalization can be used, provided that it is

consistently applied. For this work each mode will be

divided by max [4], which ensures that the maximum
x,y,z

magnitude of any normalized eigenfunction will be 1.

(2) The discrete eigenvectors, which are calculated by NASTRAN

(specifically the satellite mode shapes), are normalized

so that each eigenvector Ji satisfies the relationship
T = l.

(3) Note that in the representation

00

q(xy,z,t) = E _j (x,y,z) t)

j=l

F(x,y,z,t)_.j (x,y,z) dS

+ J 2 = ffi3 3 S JJ[

p dS

S

multiplying @. by any constant will not change the rela-

tionship between F(x,y,z,t) and q(x,y,z,t).
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F.8 Equations of Motion of the F-8 Aircraft
(26 )

The F-8 aircraft is in a controller design example in Appendix A.

The mass and geometric data for this aircraft are given in Table F-I.

Table F-i. Mass and geometric data for the F-8 aircraft.

Mass 9994 kg (648.8 slug)

Chord 3.59 m (11.8 ft)

Wing Area 34.87 m2  (374.9 (ft)
2

Tail Length 4.8 m (15.7 ft)

Sensor Location 4.57 m (15 ft)

For purposes of Appendix A, rigid-aircraft lateral dynamic behavior

can be described by

= Ax + Bu

where

x 6

u= U = ['aWz 6
These state equations are written for a body axis coordinate frame whose

X-axis is inclined to the trimmed velocity vector by the angle of

attack a 0" The roll angle, , is the Euler angle rotation about the

aircraft X axis and its rate of change, therefore it contains components

of the angular velocity of the aircraft along both X and Z axes (see

Figure F-2).
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AIRCRAFT ROLL BODY AXIS
XA

BODY AXIS ROLL RATE
wx

.. ... ROLL STABILITY AXIS
X (st)

AIRCRAFT TRIMMED
VELOCITY VECTOR

BODY AXIS YAW RATE
Wz

ZA

AIRCRAFT YAW BODY AXIS

YAW STABILITY AXIS

Figure F-2. Coordinate axis for aircraft equation of

motion.

The flight condition of interest is Mach = 0.56, 6706 meters

altitude, and 70 7.750. For this condition

0 1.0 0.1361 0

A0 -2.625 1.91 -29.80

0 -0.0759 -0.427 2.650

0.0555 0.1359 -0.9974 -0.2173

0 0

27.0 6.13
B

1.420 -3.55

0.002315 0.04222
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F.9 Equations of Motion for the Spacecraft

F.9.1 Spacecraft Description

The spacecraft of interest in this thesis is a spaceborne optical

imaging system similiar in design to the space telescope. The design

and performance considerations, operation, and geometry of this system

are discussed in Section 2. The intent here is to describe the struc-

tural and dynamic modeling that led to the satellite equations of motion.

The optical system consists of two mirrors and focal plane arrayed

in a Cassegrain configuration. The structure which supports the optical

system consists of a rigid base and a metering truss. The rigid base

supports the primary mirror and the focal plane, and contains auxilliary

equipment for cooling the focal-plane sensors and for processing data.

The metering truss is configured to support the secondary mirror within

the geometric constraints of the optical design. Two-flexible solar

panels are rigidly attached to the base section and Lre sized to meet

the power requirements of spaceborne cryogenic optics.

The structural configuration and node-point numerical designations

are shown in Figures F-3 and F-4. Truss members are hollow graphite-

epoxy tubes, joined at nodes with metallic connectors. For design

purposes, the moment carrying capacity of the joints is assumed to be

small. Graphite epoxy was chosen as a primary material because its

strength-to-weight ratio is equivalent to aluminum or steel, and its

thermal expansion coefficient is very small.

The components of the structure are shown in Figures F-5 through

F-7. There is a basic box configuration (Figure F-5) which is extensively

stiffened in the base area (Figure F-6) and along the truss (Figure F-7).

Truss-element descriptions are given in Table F-1.
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Figure F-3. Structural configuration and node-point numerical
designation - side view.

42

8x

22

Figure F-4 Structural configuration and node-point numerical

designation - top view.
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y

Figure F-5. Components of the structure of the basic
box configuration.

y

Figure F-6. Components of the structure of the basic box
configuration, stiffened in the base area.
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Y

Figure F-7. Structural components of the basic-box configuration,
stiffened in the base area and along the truss.

Table F-I. Satellite structural data.

Structural Material: Graphite Epoxy

Density = 1720 kg/m
3

Youngs modulus E = 1.24 x 1011 N/m
2

Truss Member Sizing

Type Area (m 2 ) Use

200 3.75 x 10 - 4  basic truss members

-3
300 5.97 x 10 solar panels and base section stiffners

400 4.28 x 10 - 3  support structure for secondary mirror
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miro346)

Spaceborne optical-grade mirror- are typically composite-

sandwich constructions "glossy" low thermal-expansion materials.

Tradenames of available materials include CERVIT from ITEK and ULE

from Perkin-Elmer. Mirrors which are consistent with the spacecraft

under discussion have masses of 100 kilograms (secondary) and 700 kilo-

grams (pzimary), and have natural frequencies above 60 to 70 hertz.

F.9.2 Structural Modeling

The structure described previously was modeled with finite-

element elements and analyzed using Nastran. The following assumptions

were made.

(1) Small deformations.

(2) Leads below buckling limits.

(3) Member frequencies and mirror frequencies high compared to

truss frequencies.

(4) The mirror mounting scheme prevents structural deformations

from deforming the mirrors. This assumption implies that

mirror masses are to be accounted for (but not mirror

stiffness).

(5) Node connectors can support moment loads.

The finite-element model allowed for 240 degrees of freedom. One

hundred response modes were derived from this model. The Nastran

structural routines assume that there is no structural damping and

that modes vibrate in phase. The vehicle mass properties are given

in Table F-2.
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Table F-2. Satellite mass and inertia properties.

* Total Mass 2.95655 x 104 kg

0 cg

x = 0

y = 0

z 6.428 m

* Inertial Matrix (x, y, z)

1.61277 x 106 -6.72754 x 103 0

-6.72754 x 103 1.61277 x 106 0

0 1.539709 x 10
5

* Inertia Matrix (principle axes)

1.190 10 6

1.60604 x 10 6

1.539709 × 105

" Component Massess

Secondary Mirror 100 kg (25 kg/node: 75, 76, 77, 78)

Primary Mirror 700 kg
SPport Eip tand 100 kg (160 kg/node: 6, 7, 8, 9, 10)Support Equipment ad 10k

CMG (Base)

Solar Panels 72 kq (12 kg/node: 21, 23, 25,
26, 28, 30)
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F.9.3 Vehicle Response Modes

Table F-3 gives the structural and rigid-body eigenfrequencies.

Associated with each of tnese frequencies is a response mode. The modes

can be categorized by the dominant motion.

(i) Translation, Modes 1, 2, 3 (Figures F8 through F-10)

(2) Rigid-Body Rotation, Modes 4, 5, 6 (Figure F-lI through F-13)

(3) Solar-Panel Deformation

Vertical

symmetric, Modes 9, 15, 34 (Figure F-14)

asymmetric, Modes 7, 18, 33 (Figure F-15)

Horizontal

symmetric, Modes 8, 17, 32 (Figure F-16)

asymmetric, Modes 10, 16, 31 (Figure F-17)

(4) Upper-Lens Vibration

Membrane, Mode 22 (Figure F-19)

Rotation, Mode 50 (Figure F-20)

(6) Pure Torsion, Modes 14, 28, 29, 41, 44 (Figure F-21)

(7) Pure Axial, Modes 24, 38, 47, 48 (Figure F-22)

(8) Bending

No Mirror Rotation, Modes 23, 30, 39, 40 (Figure F-23)

Top Mirror Rotation, Modes 20, 21, 25, (Figure F-24)
26, 42, 57

(9) Coupled Axial, Torsion and Upper Lens
Membrane, Modes 11, 36, 37 (Figure F-26)

(10) Coupled Axial and Symmetric Solar -
Panel Vibration, Mode 19 (Figure F-27)
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Table F-3. Rigid-body and structural vibration eigenfrequencies.

Mode Freq (rad/s) Freq (Hz) Mode Freq (rad/s) Freq (Hz/s)

1 to 6 0 0 33 376.5 59.93

7 22.02 3.50 34 376.9 59.98

8 22.75 3.62 35 345.0 62.86

9 22.79 3.62 36 408.6 65.03

10 23.53 3.74 37 445.4 70.88

11 36.02 5.73 38 448.9 71.44

12 40.14 6.39 39 457.8 72.87

13 41.05 6.53 40 470.2 74.84

14 46.91 7.46 41 478.5 76.16

15 135.40 21.55 42 542.9 86.41

16 137.4 21.87 43 543.0 86.41

17 137.9 21.94 44 555.3 88.38

18 139.1 32.13 45 561.0 89.28

19 146.7 23.35 46 607.1 96.62

20 147.6 23.49 47 607.1 96.62

21 147.6 23.49 48 728.5 115.95

22 218.1 34.71 49 729.0 116.03

23 260.2 41.41 50 730.4 116.23

24 268.2 42.68 51 761.4 121.18

25 295.7 47.06 52 761.5 121.19

26 299.5 47.35 53 762.4 121.33

27 299.2 47.62 54 767.7 123.19

28 304.4 48.45 55 771.3 122.75

29 310.7 49.45 56 784.1 124.79

30 322.6 51.35 57 795.9 126.67

31 373.2 59.40 58 795.9 126.67

32 374.2 59.56 59 808.2 128.63

60 810.8 129.03
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Figure F-9. Rigid-body translation: Y.
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Figure F-1O. Rigid-body translation: Z.

Y1

Figure F-1i. Rigid-body rotation: X.
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Figure 12. Rigid-body rotation: Z.I
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Figure 13. Rigid-body rotation: Z.
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Figure F-14. Vertical symmetric solar-panel deformation
modes.
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Figure F-15. Vertical asymmetric solar-panel deformation

modes.
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Figure F-16. Horizontal symmetric solar-panel deformation
modes.
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MODE 20= 23.49 Hz
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Figure F-18. Upper-mirror rotation.
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Figure F-19. Lower-mirror membrane vibration.
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Figure F-22. Pure axial vibration.
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Figure F-25. Bending mode: rotation of both mirrors.
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F.9.4 Actuators and Sensors

Sixteen control inputs are available for the structure under dis-

cussion. Control moment gyros located in base section (node 5) provide

moments in the w., y , and z directions. In addition, 13 member actua-

tors are provided at the locations shown in Figure F-28. They are high-

bandwidth piezoelectric devices deployed in series with the members.

They provide axial force in the member direction. Devices of this

kind have been demonstrated in the laboratory for small-scale structure.

The future development for space application is conjecture. Actuators

were placed in locations that provided control authority to the X modes.

No definative attempt was made to optimize these locations.

y 30

29

X 28

27

23

4427

25

Fiqure F-28. Member actuator locations.
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The output of 38 sensors is available to the control system. A

platform located at node 5 provideE -he angular orientation of the vehi-

cle with respect to inertial space. In addition, two other sets of sen-

sors are deployed. Thirteen piezoelectric sensors are located with the

member actuators and provide the relative elongation of the member in

question. These sensors operate on the same principle as the actuators.

Then, along the solar panels, x-y plane displacement measurements are

made at 12 locations (nodes 1, 3, 21 to 30), and Z direction displacement

measirements are made at 10 locations (nodes 21 to 30). Several mechan-
(48)

isms are available for making these measurements. Lockheed has

developed a high-bandwidth laser-ranging sensor which looks promising.

Alternately, low-cost accelerometers could be used.

Significant actuator and sensor implementation issues must be

addressed before the vibration control of spacecraft is feasible. There

are very few space-qualified sensor/effector alternatives available,

particularly electric-powered displacement actuators. The schemes,

postulated previously are conceptually attractive, but undemonstrated.

This thesis does not treat the actuator/sensor issues.

F.9.5 State Space Equations

The state space model used to describe the satellite dynamic

response includes the three rotational rigid-body modes and the first

47 structural response modes. This model is used to evaluate pointing

and tracking performance; it is assumed that there is no translation of

the center of mass.

The state vector has 100 elements. The first 50 are modal dis-

placements; the second 50 are the associated modal velocities. With

thie state vector defined, a state space model of the form

= Ax + Bu

= Cx

can be constructed.
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The dynamical matrix, A, can be partitioned into four 50 x 50

components.

A = [
_ W 2 w c i

The frequencies, w., i 1 to 50, are the eigenfrequencies

associated with modes 3 through 53 in Table F-3. Modal damping is

assumed, and is taken equal to 5 percent.

The input distribution matrix, B, has zero elements for its first

50 rows; the force inputs only effect states 51 to 100. Any element

of B, b i+50j, represents the force input to the ith mode from the jth

actuator. Numerically, b i+50 is given by the displacement of theth 3.50,jth

i th-mode shape evaluated at the j -actuator location.

Similiarly, the output matrix C has nonzero elements only in

columns 1 to 50, reflecting the fact that only displacements are meas-

ured. For the first 50 columns, any element of C, C. . represents the
.th 1

displacement of the j mode as recorded at the ith sensor.

The infl-uence coefficient matrices from which B and C are derived

are given in the following.
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APPENDIX G

EIGENSYSTEM PERTURBATION THEORY

Given the linear, time-invariant system Z described by

= Ax + Bu (G-1)

where

= the eigenvalues of A.n

RN and Ln = the right and left eigenvectors of A associated

with A
n

That is

A R = A R (G-2)-n n--n

L A = A L (G-3)
--n n --n

This appendix derives expressions for the incremental changes in "\. andn

R as a result of known perturbations in the A matrix.n

Define a perturbed matrix

A*= A + 6A (G-4)

then

[A + 6A] + 6 = [An + "n ] [R + 6N (G-5)
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Using Eq. (G-2), Eq. (G-5) becomes

A -R , A[_ + 6R] " + 
+

R [(R-6)
n - -N -N

T
If Eq. (G-6) is multiplied by L, and Eq. (G-3) is used, thenn'

L T A [R + f~

dn - (G-7)
n T +

To first order

T.L :A R
-n -N (G-8)L%I T

(44)

This expression was first derived by Jacobi. Aubrun extended Jacobi's

work by developing a relation for 6R. Specifically, if a normalization

matrix G is defined, such that
n

RT G R = 1 (G-9)
-n n -n

then, for sufficiently small 6RN' denoted dRn

RT G dR 0 (G-10)
-n n -n

Using Eq. (G-9) and (G-10), Eq. (G-6) can be expanded and premultiplied

by RT G , giving
n

d\ = RT G 6AR + RT G A dR (G-11)
n -n r --n -n n --n
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If Ec. IG-7) is used to eliminate d from Eq. (G-11),

d = A - F R' 0 A - • I R S - -, ;A P (G-12)
-n -- n n n -n- -r.

Equations (G-7) and (G-12) give the incremental change in : and Rn n

resulting from a perturbation in the A matrix. Equation (G-7) implies

that

d - A (G-13)

Equation (G-12) implies that

- -l
dR. A 1A R for ., small (G-i4)-n n

Additionally, for the special case where 20 is a self-adjoint

system, orthonormal modes can be chosen, and G = I. Then Eq. (G-12)

can be rewritten

dP N  [A- R RT - I] I RT I] A R (G-15)
-N n-N -n n - -n

if ' is large enough, then

1 RT- Ti
dR-- [I + R T] [I - J R iAR (G-16)

-N-N -N -N -N -Nn

Note that R RT is a positive definite quantity so

dR < 1 (G-17)
n
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APPENDIX H

IMPLEMENTATION ISSUES

Chapter 3 exhibits specific controller designs which inciude up

tc four listinct components.

(1) Regulator gain matrix

2) Asymptotic observer

(3) Input transform

(4) Output transform

This appendix deals with the designs of Chapter 3 at the component

level. This intent is to discuss the component design algorithms, and

to exhibit the alaorithm input data.

. s r ains

Reculatcrs are designed for two systems [A B ] and [ , B T2]1 1 ''' 1 2

G -ven a dynamical matrix A, an input distribution matrix B, and a guad-

ratio expression f-or cost, the optimal feedback gain matrix is

-I T
K = R BP (H-)

where P satisfies the algebraic Riccati equation

-iT T
0 = P - PR B F +A P PA
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and where R1 and R2 are state-deviation and control-effort weighting
matrices in the cost function

2 1 + uTR udt (H-3)

(6)
In this thesis, Eq. (H-2) is solved using Potter's noniterative method,

which constructs the matrix P from the eigenvectors of Z

= (H-4)
R 1  -A T

This method is efficient, but has numerical difficulties when R1 and R2

choices lead to multiplicity of eigenvalues in Z.

For the [AI B I design, the weighting matrices R1 and R2 are given

in Table H-1 (note, R1 = q and R2 = R). The cost matrix and poles of

[A + BK] are given in Chapter 3. The gain matrix is given in Table H-2.

For the design [A1 , BI T2 , the weighting matrices R and R2

are given in Table H-3. The weighting matrix on state deviations RB, is

the same as above (R1 = Q). The weighting matrix for control effort is

given by

= T2RT 2  (H-5)

In this way, both designs have the same cost functions. The cost matrix

P for the second design is exhibited in Table H-4, and the gains K are

given in Table H-5.
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Table H-I. State and control weightings for regulator [Al , B 1].

POTTER INPUT DATA TIME: 8:50:03.5 DATE: 07/08/80 (80/190)

I N CONTROL GAINS
2 * X1 TRANS MODEL X1 WEIGHTS
3 /GET=S206
4 /PUT=Q411 X1 GAINS NO TRANS
5 /STATES ARE WEIGHTED
6 Q 1 I 1.666666666E+00 2 2 1.666666666E+00 3 3 1.666666666E+00
7 Q 4 4 1.000000000E+00
8 Q 5 5 0.O00000000E00
9 Q 6 6 1.000000000E+00 7 7 1.000000000E+00 8 8 1.O00000000E+00

10 Q 9 9 1.666666666E+00 1010 1.666666666E 00 1111 1.666666666E+00
11 Q 1212 1.666666666E+00 1313 1.666666666E+00 1414 1.666666666E+00
12 Q 1515 1.000000000E+01
13 Q 1616 0.000000000E+00 1717 1.000000000E+00 1818 1.000000000E 00
14 Q 1919 1.O00000000E+00
15 Q 2020 1.666666666E+00
16 Q 2121 1.666666666E+00 2222 1.000000000E+01
17 R 1 1 1.0000000OOE-07 2 2 1.000000000E-07 3 3 1.000000000E-07
18 R 4 4 1.OOOOOOOOOE-07 5 5 1.000000000E-07 6 6 1.000000000E-07
19 R 7 7 1.000000000E-07 8 8 1.0000000OOE-07 9 9 1.0000000000-07
20 R 1010 1.OOCOOOOOOE-07 1111 1.000000000E-07 1212 1.000000000E-07
21 R 1313 1.000000000E-07 1414 1.000000000E-08 1515 1.00000000E-08
22 R 1616 1.000000000E-08
23 /COMPUTE
24 /END

....---- - -- .... ........ .... ....----------------------------- . .. .. ... . .. . .. .. ...
END OF INPUT DATA

Notes: (1) States 1 to 11 correspond to displacements of modes 4,

5, 6, 7, 10, 11, 12, 13, 20, 21, and 22. States 12 to

22 correspond to modal displacements.

(2) R = Q, R2  = R

(3) Only nonzero elements are given.
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Table H-2. Optimal gain matrix for [AI B regulator (sheet 1 of 2).

OPTIMAL GAIN MATRIX K

1 2 3 4 5
1 -3.6570036070-01 -3.9558479710-03 -2.1581589610-02 2.2602091860-02 2.2199726510-10
2 2.883143772D+02 1.1867990600+02 -1.268889412D+02 8.578248218D03 8.6615395600-10
3 2.8097927900+02 9.9559983070401 1.3627674500+02 -8.8366824300+03 2.2491795460-09
4 2.8757201750+02 -1.115134170002 1.2242768280+02 -8.4488865770.03 -7.6960193240-10
5 6.9768315000+00 -1.0648856390.02 -5.0023025450.02 1.165846895D+04 -2.2465701670-09
6 1.2279586360-01 -1.1681293430+02 1.0795254730+02 -8.394287134D03 -8.5615532230-10
7 6.0132063930.00 -8.2140281380+01 -1.3848491600 02 8.8707109820+03 -1.6339641520-09
8 1.76389564C0-02 1.1206516610.02 -1.0263463590.02 8.3538271140.03 7.7928967970-10
9 -5.9992263230.00 9.6896262170+01 1.3111232600.02 -8.8146103980+03 1.6326328340-09

10 9.2549469570+00 -5.5220313240+01 -3.6065365950+02 2.9013339250+04 -1.2324354500-09
11 -1.1037769700-01 3.0341709190402 -6.7996375260.01 4.2764033640+03 -2.0209207730-10
12 -6.1856910210.00 5.520916130D+01 3.605536264D 02 -2.9013760990.04 1.412767915D-09
13 3,5234120890+00 -3.0342441940+02 6.7917302260.01 -4.2768460090+03 1.6884406430-10
14 -2.2941626740+01 -9.045190145D03 -8.940401276003 -5.2040489530+04 4.4868878980-10
15 -2.7964359910+00 9.0577214740.03 -8.9697750750.03 -5.1789053460+04 -2.2249471480-10
16 -1.2814672730+04 3.4758462220+01 3.8638293780+01 -2.4177209150.03 -1.1534238410-09

6 7 8 9 10
1 -1.6879241770+02 -2.9081759370-03 6.6912730680-03 5.93^8220710-02 1.4458329710-01
2 -3.447732441D01 1.9272018640+03 -3.7529106750.03 5.3826229800+03 -7.3646734450+03
3 -1.1126344780+01 9.2194061710.02 2.5482126420+03 5.1809406630.03 7.7051483490+03
4 -3.4038063760.01 -1.9329850660.03 3.7831342390.03 -5.2236204690+03 7.7847397270+03
5 4.7274979550.00 -9.6688109920.02 -1.0216874750.+03 -5.2099796100+03 -7.8339212530 03
6 2.9532934840+01 -1.6290016670+03 4.231465117003 -5.4284708150.03 7.727163282003
7 1.3301832620-01 -5.5992604330.02 -2.9366489490.03 -5.2114690280.03 -7.6659777850+03
8 2.9156449330.01 1.6062318900+03 -4.253692562D+03 5.4269742930+03 -7.721556110D.03
9 8.0289287090-01 6.3023932160+02 2.9675641390+03 5.2186117210.03 7.657034239D+03

10 -5.532717206001 -8.3407715050+02 -1.5943406990+04 -1.700868015D03 -2.773832141004
11 2.6647187920+01 1.3561481560+03 -1.3988355140.03 1.9031239690+04 -3.0978438490+03
12 -5.3629561750.01 8.3392762980+02 1.5943699850+04 1.7018472530.03 2.7741092610+04
13 2.6721527120+01 -1.3562945260+03 1.3991213730.03 -1.9030319760.04 3.1004696750 03
14 -1.4917006500.01 -4.5292653520+04 8.9091212610+04 7.7003196290.04 1.0802671020.05
15 -1.2945431410.01 4.5949383770404 6.9623647770+04 -9.0252759330+04 1.0005481640+05
16 7.6223150150+02 1.0523998910+03 -4.1807570990+02 -3.4332829550.03 -9.4288967850.03

11 12 13 14 15
1 -6.1619686430+01 -3.6545849840-01 -3.9827760290-03 -2.176517677M-02 4.1760378780-04
2 7.979301160001 2.9686181680.02 1.2443099700.02 -1.2743724620+02 -1.138080488003
3 8.6653708900.01 2.8951941030.02 1.0268447930402 1.3938005020.02 1.0312366600+03
4 8.4453738010+01 2.9614687330.02 -1.1657678060+02 1.2254802710+02 1.1351540430.03
5 -4.7300461760+01 7.0123260370+00 -1.1245697250+02 -5.3887017730+02 -1.0015178500+03
6 3.6676812210+01 1.3922167650-01 -1.2208451330+02 1.0622298320+02 1.1639833470.03
7 2.927736967D+01 6.0277485850+00 -8.3312053020.01 -1.4130610160+02 -1.0635715740+03
8 3.2470123760.01 1,0209094210-03 1.1688168990+02 -1.0038629150+02 -1.164442449D03
9 2.9801293180+01 -6.0139273900.00 9.9481691820401 1.3321324210.02 1.0642101430+03

10 5.6290343700+03 9.2384761790+00 -5.768413740D+01 -3.5259358440.02 -4.1921173460+03
11 5.6490496920+03 -1.0301607070-01 3.0896376190+02 -6.9105340150+01 -5.2970590900+02
12 5.6387632260+03 -6.1632137340.00 5.7672598200.01 3.5249311230+02 4.1920883180.03
13 5.6509438620.03 3.5218103750+00 -3.0897144990.02 6.9026005100+01 5.2967659190+02
14 -2.8390277250+02 -2.1865786000+01 -1.0024598580+04 -9.9618069590+03 9.6183581620+03
15 -1.8927504250+02 -2.6827083840+00 1.0038753160+04 -9.9970094930+03 9.5989479060.03
16 -5.3677733550+03 -1.3195619550+04 3.8063022710+01 4.2243289550+01 7.0373952900+01

Note: Columns 1 to 11 correspond to displacements of modes 4, 5, 6, 7,

10, 11, 12, 13, 20, 21, and 22. Columns 12 to 22 correspond to

modal velocities.
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Table H-2. Optimal gain matrix for (AIBI ] regulator (sheet 2 of 2).

16 17 18 19 20
1 6.2973687840-11 -1.4725228940+01 -1.4149095120-04 -8.4198113500-05 5.3050495530-04
2 3.3542014010-13 -9.0070588980+00 -2.6681801180+02 -2.466301161D+02 1.4921705110.03
3 -3.3747968250-11 -7.7932273730+00 -2.9751912360+02 2.1935558510.02 5.6838791090+02
4 1.2422622650-11 -9.012070295D+00 2.6730192990 02 2.459700935D02 -1.4924320650.03
5 2.9501067070-11 -8.2087003750+00 2.9809477160+02 -2.3684541000.02 -5.684475841D+02
6 -3.4862755630-12 7.7020516000+00 2.7997556520+02 2.5868787520+02 -1.1926046370.03
7 2.4174985690-11 6.4121478420+00 3.1070313120+02 -2.317603463002 -2.9397244840+02
8 -1.8384216810-11 7.7064333230.00 -2.7984061540+02 -2.5843540270.02 1.1925850430.03
9 -2.4499843180-11 6.3893656790+00 -3.1112158960+02 2.3140885480+02 2.9402977820+02

10 4.1524951250-11 1.217098820003 1.3254944440+02 -9.1157723820.02 -6.099290345D02
11 -8.094735020D-12 1.221221951D03 -1.100599023003 -1.0842886790 02 5.0401510640+02
12 4.4957535470-12 1.2170508940+03 -1.325396688D+02 9.115651758002 6.099289479002
13 -6.4583817930-12 1.221240321003 1.1006089120+03 1.084169127002 -5.040157006002
14 -5.2339746730-11 -3.4615052160-02 -4.9969786730+03 4.732199199003 -1.0691506840+02
15 1.1420639920-11 6.456898264D-02 4.983512525D03 4.7447512580+03 -2.3722117770+02
16 -2.1755857850-13 2.4368483200+01 -1.6274563100.01 1.1791927650+01 6.5643556820.00

21 22
1 1.3208180230-03 4.1450838410.03
2 -5.6334834670 02 4.1963900680+02
3 1.4881076210+03 -1.4002622190+02
4 5.626234375D02 4.1963859040+02
5 -1.4899888570+03 -1.3994833770+02
6 2.8917734560.02 -7.1968191390.02
7 -1.1887418810.03 -1.0566515400+01
8 -2.8915638180.02 -7.1968090830+02
9 1.1887135690+03 -1.056040129001

10 -4.8962636970+02 1.5391874220.03
11 -6.0775547350.02 -4.5442981230.02
12 4.8962618250+02 1.5391906890.03
13 6.0775401780+02 -4.5442849670+02
14 2.5999320680.02 6.2866297360-02
15 -1.7847686780.01 4.0489045070-02
16 1.591469342D+01 -9.6958082970+00

Note: Columns 1 to 11 correspond to displacements of modes 4, 5, 6, 7,

10, 11, 12, 13, 20, 21, and 22. Columns 12 to 22 correspond to

modal velocities.
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Table H-3. State and control weightings for regulator [A1, B1T2 ].

POTTER INPUT DATA TIME: 17:50:11.6 DATE: 07/07/80 (80/189)
-- --- -. ..- -...- -.... --.... ----- ----- ....- ----- .. .- ....- .... ---- .. . .... ....

1 * CONTROL GAINS
2 * XI TRANS MODEL X1 WEIGHTS
3 /GET=S3O6
4 /PUT=Q409 X1 GAINS
5 /STATES ARE WEIGHTED
6 Q 1 1 1.666666666E+00 2 2 1.666666666E+00 3 3 1.666666666E+00
7 Q 4 4 1.0000O000E+00
8 Q 5 5 O.OOOOOOOOOE-05
9 Q 6 6 1.OOOOOOOOE.00 7 7 1.000OOO000E+00 8 8 1.O00000000E+00

10 Q 9 9 1.666666666E 00 1010 1.666666666E 00 1111 1.666666666E400
11 Q 1212 1.666666666E+00 1313 1.666666666E+00 1414 1.666666666E+00
12 Q 1515 1.000000000E+01
13 Q 1616 O.OOOOOOOE-05 1717 1.O00000000E+00 1816 1.O00000000E+00
14 Q 1919 1.000000000E+00
15 Q 2020 1.666666666E+00
16 Q 2121 1.666666666E+00 2222 1.666666666E 01
17 R 1 1 1.800000000E-09 1 3 -9.00000000E-10 2 3 7.000000000E-10
18 R 1 S -6.000000000E-10 1 9 -3.00000000E-10 2 2 1.120000000E-08
19 R 2 4 6.800000000E-09 2 6 6.900000000E-09 2 7 3.700000000E-09
20 R 2 8 -2.100000000E-09 2 9 1.O00000000E-1O 210 4.900000000E-09
21 R 3 1 -9.0000000OOE-10 3 2 7.000000000E-10 3 3 9.500000000E-09
22 R 3 4 -2.200000000E-09 3 S 5.000000000E-10 3 6 -3.300000000E-09
23 R 3 7 -2.400000000E-09 3 8 5.800000000E-09 3 9 5.00000O0GOE-10
24 R 310 6.800000000E-09 4 2 6.800000000E-09 4 3 -2.200000000E-09
25 R 4 4 6.410000000E-08 4 6 -3.350000000E-08 4 7 3.640000000E-08
26 R 4 8 6.890000000E-08 410 2.140000000E-08 5 1 -6.000000000E-10
27 R 5 3 5.000000000E-10 5 5 1.490000000E-08 S 9 1.500000000E-09
28 R 610 -1.450000000E-08 8 4 6.890000000E-08 6 2 6.900000000E-09
29 R 6 3 -3.300000000E-09 6 4 -3.350000000E-08 6 6 7.440000000E-08
30 R 6 7 -1.880000000E-08 6 8 -7.390000000E-08 7 2 3.700000000E-09
31 R 7 3 -2.400000000E-09 7 8 3.860000000E-08 7 6 -1.880000000E-08
32 R 7 7 2.090000000E-08 710 1.190000000E-08 8 2 -2.10000000E-09
33 R 8 3 5.800000000E-09 7 4 3.640000000E-08 8 6 -7.39000COE-08
34 R 8 7 3.860000C00E-08 8 8 1.082000000E-07 1010 3.570000000E-08
35 R 810 3.800000000E-08 9 1 -3.000000000E-10 9 2 1.O0000000OE-10
36 R 9 3 5.0000000OOE-10 9 5 1.5000000OOE-09 9 9 5.600000000E-09
37 R 10 2 4.900000000E-09 10 3 6.800000000E-09 10 4 2.140000000E-08
38 R 10 6 -1.450000000E-08 10 8 3.800000000E-08 10 7 1.190000000E-08
39 /COMPUTE
40 /END

END OF INPUT DATA

Notes: (1) States 1 to 11 correspond to displacements

of modes 4, 5, 6, 7, 10, 11, 12, 13, 20, 21

and 22. States 12 to 22 correspond to the

modal velocities.

(2) R - Q, R2  a R

(3) Only nonzero elements are given.
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Table H-4. Cost matrix for [A1 , T2 BI ] Regulator (sheet 1 of 3).

SOLUTION MATRIX "P" OF ALGESRAIC RICCATI EQUATION

1 2 3 4 5
1 1.7296086720+00 -2.2834191110-03 -8.1220026720-05 -8.4350011360-03 0.0
2 -2.2834191110-03 1.9497229750400 -1.92510S41330-02 1.9929569060+00 0.0
3 -8.122002672D-05 -1.9251041330-02 1.8626699910+00 -1.861699953D 00 0.0
4 -8.4350011360-03 1.9929569060400 -1.8616999530+00 3.4251454570+02 0.0
S 0.0 0.0 0.0 0.0 0.0
6 -1.5179884540-02 2.9521546600-03 7.0588859970-03 -7.3164814340-02 6.297914781D-13
7 -1.948649571D-03 7.6813520010-01 5.5572447510-02 -1.9832011030+00 6.7970647970-13
8 -1.9237908270-03 3.4861824790-01 -8.0669105700-01 -2.8061066430+01 3.16533168SD-13
9 2.8369281150-02 -3.1937485200-01 2.1223856730-01 -5.1282478270+00 -3.6796694560-12

10 3.0824000040-02 8.1060602010-01 2.0388858770-01 -3.938384303000 1.1593051880-12
11 6.0118051240-02 1.6249744650-03 1.6417825140-02 -1.8376799690-01 1.2281327500-12
12 6.413209Z460-02 -2.5338819680-03 -6.7529732180-05 -1.1114175570-02 -5.2799567530-18
13 -2.5063829470-03 3.072654399D-01 -2.2548865440-02 2.364395001000 2.1340136960-14
14 -8.139395C820-05 -Z.1557897e8o-02 2.0777059850-01 -2.127688872D 00 -3.20e6069000-15
15 -2.9779836070-04 4.706709581D-03 -8.774412284D-03 -7.831196203D-02 3.1810376990-14
16 0.0 0.0 0.0 0.0 0.0
17 3.256759667D-04 -1.4435736420-05 -4.537201739D-05 -4.6332773830-04 -9.519460869D-15
18 -8.9e84742650-05 -3.1559733300-03 2.6352132130-05 -6.527410455D-02 7.88900C2240-15
19 1.90545206S0-05 -5.8166248200-03 9.7922387460-03 -5.7495917980-01 8.0574751760-16
20 -3.0841Z44210-05 9.892192132D-04 1.488622307D-04 -8.8597503080-03 1.8497250450-14
21 -4.693941147D-05 -1.2503749710-03 5.2703085150-04 -1.908842944D-02 3.420772259D-14
22 -3.2278626460-05 -5.789678033D-07 -1.5688745120-06 5.7133602110-06 1.3702341370-14

6 7 8 9 10
1 -1.5179884540-02 -1.9486495710-03 -1.9237908270-03 2.8369281150-02 3.0824000040-02
2 2.9521546600-03 7.6813520010-01 3.4861824790-01 -3.193748520D-01 8.1060602010-01
3 7.0588859970-03 5.557244751D-02 -8.0669105700-01 2.122385673D-01 2.0388858770-01
4 -7.3164814340-02 -1.9832011030.00 -2.806106643D001 -5.1282478270+00 -3.938384303000
5 6.297914781D-13 6.7970647970-13 3.165331688D-13 -3.6796694560-12 1.15930518$0-12
6 7.8539010860+01 -2.063494992D-02 -7.7537006170-03 6.9800627480-04 5.6210452030-03
7 -2.0634949920-02 3.979863294D01 -1.076440683D+00 3.359460933D+00 1.2442946100+00
8 -7.753700617D-03 -1.076440683D00 5.6656433350+01 -2.4299500400-01 2.6867259690.00
9 6.9800627480-04 3.3594609330+00 -2.4299500400-01 6.245946396D 02 -5.578:8894QD#01

10 5.621045203D-03 1.2442946100+00 2.686725969D000 -5.5782689410.01 6.9642801900.02
11 -3.1023519440-01 2.3727263793-02 -6.3215236870-02 -9.2672664ZCD-03 2.9814061Z6D-01
12 -1.623379703D-02 -3.0182794150-03 -2.4530596050-03 2.9943839730-02 3.095323770D-02
13 3.4802118110-03 9.059242563D-01 4.2S22221310-01 -3.7602919030-01 9.4882291520-01
14 7.874306025D-03 6.0560270070-02 -9.227621811D-01 2.2813093800-01 2.1497339340-01
1s 1.1079601550-03 2.5992251389-01 2.1995240060+00 5.3554703210-01 1.0242774290 00
16 0.0 0.0 0.0 0.0 0.0
17 3.4246173260-04 1.5469308170-04 -3.6799146080-05 3.2368043090-04 1.4772535340-03
18 -1.4134406180-04 -5.589167114D-03 -1.4459833570-02 -6.3968169640-01 3.270880354D-01
19 2.9220185510-04 -9.9240769840-03 -7.3842566570-02 1.0502625180-01 1.797797188D-01
20 1.007655540-06 4.8970509010-02 -6.921876360D-03 -1.5054883470-02 1.2953323660-02
21 -7.0634625350-0S -2.7938008300-02 -2.6690439370-02 6.7328793190-03 -1.3385614670-02
22 -5.6847944390-03 -1.8751816150-05 -8.9544096320-05 -3.657739236D-04 1.4011705390-03

Note: States 1 to 11 are x modal displacements. States 12 to 22

are corresponding modal velocities.
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Table H-4. Cost matrix for (Al, T2 B1 ] regulator (sheet 2 of 3).

11 1Z 13 14 15
1 6.0118051C4D-02 6.4132002460-02 -2.50633Z9470-03 -8.1393 52=2-05 -2.9771836M70-04
2 1.6^4;974650-03 -2.53-!0163D-G3 3.07^65439';-Cl -2.15578976")-02 4.70370;561D-03
3 1.64176:514D-02 -6.75297321CD-05 -Z.2546S65440-02 2.0777059?S0-01 -8.774412Z$43-03
4 -1.8376799690-01 -1.111417557D-0 2.364395301D00 -2.12768870+00 -7.831196Z030-02
5 1.2281327500-12 -5.2799567530-18 2,134013696D-14 -3.ZCS6069000-15 3.18103769q3-14
6 -3.1023519440-01 -1.6233797030-02 3.4802118110-03 7.8743060250-03 1.1079601550-03
7 2.3727263790-02 -3.018279415D-03 9.059242563D-01 6.0560270070-02 2.5992251380-01
8 -6.3215236870-02 -2.4530596050-03 4.25222131D-01 -9.227621811D-01 2.19952400 600
9 -9.26726642C0-03 2.9943839730-02 -3.7602919030-01 2.2813093800-01 5.3554703210-01

10 2.9814C6126D-01 3.0953237700-02 9,488:291520-01 2.149733934D-01 1.0242774290+00
11 1.328745ES00D04 6.2424569700-02 1.83729230M0-03 1.804970065D-02 -3.4571109560-04
12 6.242456970D-02 6.655706997D-02 -3.0012430910-03 -8.0359944670-05 -3.3233994840-04
13 1.8372923080-03 -3.0012430910-03 3.53140301D-01 -2.469372352D-02 9.8265316320-03
14 1.804970065D-02 -8.035994467D-05 -2.46937235:D-02 2.286186252D-01 -1.3959454320-02
Is -3.4571109560-04 -3.3233994840-04 9.8265316320-03 -1.3959454320-02 7.458095395D-01
16 0.0 0.0 0.0 0.0 0.0
17 2.08738819:D-01 3.2629837910-04 -1.4529372890-05 -4.506873876D-05 -3.128749838D-05
18 3.8070713060-04 -9.0188400770-05 -3.218S1S09D-03 1.1887163340-04 -7.0412054860-03
19 2.756994603D-03 2.6093721633-05 -6.7277910020-03 1.0533494590-02 -4.1952:67b0D-02
20 7.7694443,7D-04 -3.2099934640-05 1.1440676750-03 1.751S566650-04 -2.068$379940-04
21 -3.108562414D-03 -4.559617704D-05 -1.4351471;SD-03 6.1:9Z436600-04 -2.37779944 0-03
22 -6.7801417340-05 -3.2225266560-05 -5.6835358540-07 -1.369:80905D-06 -3.7173206230-06

16 17 18 19 20
1 0.0 3.2567596670-04 -8.9884742650-05 1.905452C880-05 -3.084124421D-05
2 0.0 -1.4435736420-05 -3.1559733300-03 -5.8166248200-03 9.892192132D-04
3 0.0 -4.537201739D-05 2.6352132130-C5 9.79C2387460-03 1.489622307D-04
4 0.0 -4.6532773530-04 -6.527410D455D-02 -5.74959179e0-01 -8.8597503080-03
S 0.0 -9.5194608690-15 7.8890002240-15 8.0574751760-16 1.8497250450-14
6 0.0 3.4246173260-04 -1.4134406180-04 2.922018551D-04 1.007655584D-06
7 0.0 1.546930817D-04 -5.5891671140-03 -9.9240769840-03 4.8970509010-02
8 0.0 -3.6799146060-05 -1.445983357D-02 -7.3;4,56657D-02 -6.9Z18763600-03
9 0.0 3.236804309D-04 -6.3968169640-01 1.0502625180-01 -1.5054883470-02

10 0.0 1.4772535340-03 3.2705803540-01 1.7977971860-01 1.2953323660-02
11 0.0 2.08738819:0-01 3.807071306D-04 2.7569946030-03 7.7694443270-04
12 0.0 3.2629837910-04 -9.0188400770-05 2.60S572163D-05 -3.2C999246(0-05
13 0.0 -1.45:937:80-05 -3.21681 2CM-03 -6.727791C020-03 1.1440676750-C3
14 0.0 -4.5068736760-05 L.1eS7163340-04 1.053W4945D-02 1.75185 665-04
15 0.0 -3.12874953:0-05 -7.041205860-03 -4.1952267600-02 -2. C60^37994D-04
16 0.0 7.63946529,0-16 2.6713916830-16 3.061975561D-16 4.716058684D-16
17 7.6394652940-16 6.0524992830-02 -2.1870159470-05 1.1576987370-05 5.245123542D-07
18 2.6713916830-16 -2.1870159470-05 2.3818087950-02 -1.7590000S0M-03 1.319212990D-03
19 3.0619755810-16 1.1576987370-05 -1.759000082D-03 2.6435511750-02 -1.148709543D-04
20 4.7160586840-16 5.2451235420-07 1.3192129900-03 -1.1487095430-04 2.7839579100-02
21 7.6696996010-16 -1.3647381730-06 -7.4029515970-04 -4.583751144D-04 -2.1766632030-03
22 6.2786211200-16 -6.2882505130-05 3.9361635&30-07 -1.2303746640-06 -1.2914465630-06

Note: States 1 to 11 are x 1 modal displacements. States 12 to 22

are corresponding modal velocities.
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Table H-4. Cost matrix for [Al, T2 B I] regulator (sheet 3 of 3).

21 22
1 -4.6939411470-05 -3.2278626480-05
2 -1.250374971D-03 -5.7896760330-07
3 5.2703085150-04 -1.5688745120-06
4 -1.9088429440-02 5.7133602110-06
5 3.4207722590-14 1.3702341370-14
6 -7.063462535D-05 -5.6847944390-03
7 -2.793800830D-02 -1.8751818150-05
8 -2.6690439370-02 -8.9544096320-05
9 6.7328793190-03 -3.657739Z360-04

10 -1.3335614670-02 1.4011705390-03
11 -3.1085624140-03 -6.7801417340-05
12 -4.559617704D-05 -3.2225266560-05
13 -1.4351471980-03 -5.8885358540-07
14 6.129Z436600-04 -1.3892809050-06
15 -2.3777994400-03 -3.717320823-06
16 7.669699601D-16 6.2786211200-16
17 -1.3647381730-06 -6.2882505130-05
18 -7.4029515970-04 3.936163583D-07
19 -4.5837511440-04 -1.2303746640-06

^0 -2.66632030-03 -1.2914465630-06

21 3.139656606D-02 6.5327269110-06
22 6.532726911D-06 2.7927307860-01

Note: States 1 to 11 are xI modal displacements. States 12 to 22 are

corresponding modal velocities.
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Table H-5. Gain matrix for [All T2B1 ] regulator.

OPTIMAL GAIN MATRIX K

1 2 3 4 5
1 -3.6495060840+04 -1.137696446D+02 1.9454036370+02 -4.754360032D+03 -1.755672733D-10
2 1.0217788290+04 -9.1317817790+03 -8.889883678D+03 -1.363622700D+04 -6.673395542D-09
3 -2.008753309004 -2.1671837640+03 -1.897525455D+03 3.5317781570+03 -2.5536311990-10
4 2.0598044790+04 -1.858472799003 -1.0913307990+04 -7.3572184190+04 5.992687621D-10
S -6.1936642910.02 2.9743581710+01 -1.349810824001 2.9155094640+02 8.503095407D-10
6 9.5556074530+03 3.422425421D03 -9.042316190D+03 -4.5427517930+02 3.14761440:0-10
7 -6.4138725650+04 -4.7441128150.03 4.055231811D04 2.0007115Z70+05 -4.65Z7679140-09
8 1.9483772690+04 6.2061478920+03 -1.7171676560+04 -9.300894327D03 3.4016162740-10
9 -2.6032279730+02 3.5034528210+02 2.440533167D02 5.75921225;0+02 -1.4776847C60-09

10 -5.7691118770+03 -Z.4942596590.03 8.3866085210+03 9.917996168D+03 -4.4139524790-09

6 7 8 9 10
1 9.2548929570.03 -3.0008832010+03 -9.5250050850.02 -3.316954403D+03 -2.8935665340.04
2 -3.032821497D+03 -2.4847132940+04 3.15950003ZD+04 1.2129695310.05 -7.1766137530+04
3 5.0227605360+03 -9.3628034600+03 5.8326253160+03 1.6S5345614D004 -3.5444009.6D+04
4 -5.6332593390+03 -5.4507810750+03 1.2267446180.05 7.2230953C00+04 9.0340688700+04
5 1.6C4382475D002 3.02739q32aE+01 1.1393155150+02 -3.34A3762929+02 -4.1431640-02
6 -2.712942191D.03 1.249659713D+04 9.3162560660+04 5.7070246510+04 6.0717587070+04
7 1.7685514670+04 -2.6218842950+04 -4.7407947150+05 -1.21839375D+05 -4.3550621580+05
8 -5.5191769850+03 1.910360202D04 1.7501573570+05 -1.5730621770+C4 1.8015037700+05
9 6.4716158470+02 1.07082S0630+03 -7.280326963D+02 -3.8619537630+03 2.70610918SD+03

10 1.7554371330+03 -7.2579474120+03 -8.236626776D+04 3.7363180560+03 -8.097580095004

11 12 13 14 i5
1 -3.4864141740+04 -3.787301534D+04 -8.779534809D+01 2.158983104D+02 2.5806886010.02
2 9.549962183D.03 1.0616601720+04 -1.058680757D+04 -9.825008328D+03 -2.203742580D+03
3 -2.0384609680+04 -2.0842902590+04 -2.479998346003 -2.0894934380+03 3.7613091410+02
4 2.121703072D+04 2.1378615110+04 -2.0201797300+03 -1.2254893530+04 1.5472592960.04
5 -2.2055986890+04 -6.415;842440+02 3.476841623D01 -1.5331232080+01 -2.7497899680-01
6 9.066303759D03 9.912504402D+03 3.999845636D+03 -1.0111907740+04 1.0068916870.04
7 -6.444696675D+04 -6.65556683!D04 -5.994953708D+03 4.552730777D+04 -5.9385459860.04
8 1.8553354160+04 2.02120903CD+04 7.3361852160.03 -1.9185714510+04 1.7742550940+04
9 5.79566750S0+03 -2.7110585110+02 4.0554799S60+02 2.696547430+02 2.6907653020+01

10 -4.9949565440+03 -5.98427540C6+03 -2.968642647D+03 9.36728461SD+03 -8.47293O0795003

16 17 18 19 20
1 -1.5818796840-12 1.9085707400+01 -3.7247945120+02 2.413024333D+01 5.9412500930+00
2 -1.2008113150-10 1.847453789D+01 -3.876644109D+03 2.6172786430+03 2.0334145690+03
3 -1.038069707D-11 -2.603156C230+02 -8.6040728250+02 -2.912899298D+01 -8.3645325330+00
4 8.7375339920-11 5.722283161D02 -1.7073704020+03 7.310054770D+03 -2.993334126D+03
S -8.4203939750-11 -6.232524720D+03 3.797252900+00 2.1431029720*00 3.2790638920.00
6 4.6634309790-11 3.9615879460+01 -1.7694502640+03 4.8782361350+03 -1.7070510;40+02
7 -3.7052396020-10 -1.1579635200+03 1.4758707500+03 -2.626684554D+04 5.4316947530+03
8 9.4124841770-11 8.188110453001 1.180796672D+03 3.818422631D+03 -2.833841901C03
9 -3.67583274D-11 1.7547447930+03 1.251423466D02 -4.8222693360+01 -3.6056213q6D+01

10 -1.4334275240-10 1.6770006070+01 -3.907566310+02 -4.333724674D03 2.27737263,0+02

21 22
1 1.9263223840+02 -1.2751506910+03 Note: Columns 1 to 11 correspond to
2 -5.7749437960.03 1.3424166930.03
3 3.1804118730+02 -2.2478287490+03 displacements of modes 4, 5, 6,
4 7.662546771D+02 1.707205645D+03
5 -1.4606839580+01 -2.3496964640+03 7, 10, 11, 12, 13, 20, 21, and
6 -8.7483086850+02 1.2476959520+03
7 1.0226991900+03 -6.58075750ZD+03 22. Columns 12 to 22 correspond
8 -1.5910257620+03 2.5310087160+03
9 8.8099751490+01 -2.7264502830.04 to modal velocities.

10 -2.2863838190+03 -7.7358291810+02
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H.2 Observer Gains

Three observer designs are discussed in Section 3.3. All are

asymptotic observers and, when evaluated against their own design model,

they exhibit similar error dynamics. They are different, however, in

dimension and measurement processing.

Observer 1 is based on [Al, C I and has the form

_E = Alx&1 + BlU + G[y - C11l]  (H-6)

The elements of the gain matrix G are chosen using the alpha-shift

technique (see Section 3.2), and duality is exploited to allow the use

of Potter's noniterative method. The relative weightings between model

dynamics and measurement incorporation are governed by matrices V1 and

V 2 (see Table H-6), and alpha equals six.

Observer 2 is based on [A,A 2, CIC 2. The gain matrix G,

which is 38x38, is chosen using the same methodology as above. Weight-

ing matrices V1 and V2 are given in Table H-7. The poles of

A1 2

G G[C 1 C2 )
0 A2

are given in Chapter 3. Again, alpha equals six.

Observer 3 is based on [Al. T3 C 2and has the form

AxI I +B + GT3y - C1xl

The elements of the 22x4 gain matrix G are chosen using the Potter

algorithm. V and V2 are given in Table H-8, and alpha equals six.
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Table H-6. Observer I weighting matrices.

OBSERVER INPUT DATA TIME: 16:29:25.3 DATE: 07/07/80 (80/189)

1 * OBSERVER FOR X1/X2
2 /GET=S206
3 /PUT=Q412 OBSR X1
4 /SIGMA= 6.000000000E+00
5 /STATES ARE WEIGHTED
6 Q 1 1 1.0000000OOE-05 2 2 1.000000000E-05 3 3 1.000000000E-05
7 Q 4 4 1.0000000OE-04 5 5 1.0000000OOE-04 6 6 6.000000000E-03
8 Q 7 7 1.000000000E-03 8 8 1.OOOOOOOOOE-03 9 9 1.0000000OOE-02
9 Q 1010 1.OOOOOOOOOE-02 1111 1.000000000E-01 1212 1.0000000001-05

10 Q 1313 1.00000000OE-04 1414 1.0000000001-04 1515 1.OOOOOOOOOE-04
11 Q 1616 1.000000000E-01 1717 1.000000000E-01 1818 1.000000000E-01
12 Q 1919 1.000000000E-01 2020 1.000000000E+00 2121 1.000000000E+00
13 Q 2222 1.000000000E+01
14 R 1 1 1.000000000E-08 2 2 1.OOOOOOOOOE-08 3 3 1.000000000E-08
15 R 4 4 1.000000000E-08 5 5 1.000000000E-08 6 6 1.OOOOOOOOOE-08
16 R 7 7 1.000&00000-08 8 8 1.0000OO00E-08 9 9 1.000000000-08
17 R 1010 1.000000000E-08 1111 1.0000000002-08 1212 1.0000000OOE-08
18 R 1313 1.0000000002-08 1414 1.000000000E-08 1515 1.000000000E-08
19 R 1616 1.000000000E-08 1717 1.000000000E-08 1818 1.000000000-08
20 R 1919 1.000000000E-08 2020 1.000000000E-08 2121 1.000000000E-08
21 R 2222 1.000000000E-08 2323 1.000000000E-08 2424 1.000000000E-08
22 R 2525 1.0000000002-08 2626 1.0000000002-08 2727 1.000000000E-08
23 R 2828 1.000000000E-08 2929 1.000000000E-08 3030 1.000000000E-08
24 R 3131 1.000000000E-08 3232 1.000000000E-08 3333 1.000000000E-08
25 R 3434 1.000000000E-08 3535 1.000000000E-08 3636 1.000000000E-08
26 R 3737 1.0000000OOE-08 3838 1.000000000E-06
27 /COMPUTE
28 /END

END OF INPUT DATA

Note: V1  = Q, V = R

299



Table H-7. Observer 2 weighting matrices.

OBSERVER INPUT DATA TIMIE: 17:54:41.2 DATE: 07/07/80 (80/189)
- -- - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 * OBSERVER FOR X1/X2
2 /GET=S202
3 /PUT=S604 OBSR Xl-XZ
4 /SIGMA= 6.000000000E+00
5 /STATES ARE WEIGHTED
6 Q 1 1 1.000000000E-05 2 2 1.0000000OOE-05 3 3 l.000000000E-05
7 Q 4 4 3.O00000000E-03 5 5 l-OOOOCCOOOE-03 6 6 1.000000000E-03
8 Q 7 7 1.000000000E-03 8 8 8.O00000000E-02 9 9 8.OOOOOOOOOE-02
9 Q 1010 8.OOOOOOOOOE-02 1111 8.000000000E-02 1212 l-00000CE-02

10 Q 1313 1.000000000E-02 1414 1.000000000E-02 1515 1.000000000E-02
11 Q 1616 1.OOOGOOOOOE-02 1717 1.000000000E-02 1818 1.0CO020000E-02
I? Q 1919 2.OQOOOOOOOE-01 20C0 1.OOOOOOOOOE-05 2121 1.0OOOOOOOOE-05
13 Q 2222 1.O0C00000E-05 23Z3 3.000000000E-01 Z424 1.0000COCOE-01
14 Q Z525 1.00OOOOOOOE-01 2626 1.000000000E-01 2727 3.000000000E-01
15 9 2328 3.OOOOOOOOOE-01 29Z9 3.0000000G0E-01 3030 1.0003O00OE-01
16 Q 3131 1.000000000E-01 3232 6.OOOO00000E-01 3333 8.00OOOOOOOE-01
17 Q 3434 9.000000000E-01 3535 1.000000000E+00 3636 1.000000000E+01
18 Q 3737 1.000000000E+01 3838 2.000000000E+01
19 R 1 1 1.000000000E-07 2 2 1.000000000E-07 3 3S l.000000000E-07
20 R 4 4 1.000000000E-07 5 5 1.000000000E-07 6 6 1.00000000CE-07

21 R 7 71.00000000GE-07 8 8 .0000E-7 9 9 1.000000000E-07

22 R 1010 1.000000000E-07 1111 1.00000000CE-07 1212 1.000000000E-07
23 R 1313 1.000000000E-07 1414 1.0000000OOE-07 1515 l.000000000E-07
24 R 1616 1 000000000E-07 1717 1.000000000E-07 1818 l-OOOOOOOOOE-07
25 R 1919 1.00000000CE-07 2020 1.00000CO00E-07 2121 1.000000000E-07
26 R 2222 1.00000000CE-07 2323 1.000000000E-07 2424 1.000000000E-07
27 R 2525 1.0000000COE-07 26Z6 1.00000000CE-07 2727 1.0000000O0E-07

28 ~ 2828 l.00000000CE-07 2929 1.2000E-733 .C00COOOE-07

29 R 3131 1.060000000E-07 3232 1.00000000CE-07 3333 1.000300000E-07
30 R 3434 1.000000CO0E-07 3535 1.000000000E-07 3636 l1COCCCOOOOE-07
31 R 3737 1.00000G000E-07 3838 1.000000000E-07
32 /COMPUTE
33 /ENO

END OF INPUT DATA

Note: V, = 2 R
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Table H-8. Observer 3 weighting matrices.

OBSERVER INPUT DATA TIME: 17:08:23.0 DATE: 07/07/80 (80/189)
---- . .---------------------- .---- .- ...--- -- + ...--- ...-------------------------------

1 * CONTROL GAINS
2 Xl TRANS 11
3 /GET=S306
4 /PUT=Q607 X1 OBSR
5 /SIGMA=6.0
6 /STATES ARE WEIGHTED
7 Q 1 1 1.000000000E-04 2 2 5.000000000E-04 3 3 5.000000000E-04
8 Q 4 4 1.000000000E-01
9 Q 5 5 1.000000000E-01

10 Q 6 6 6.000000000E+01 7 7 5.000000000E-02 8 8 S.000000000E-02
11 Q 9 9 1.000000000E+00 1010 1.000000000E+00 1111 2.000000000E+03
12 Q 1212 1.000000000E-04 1313 5.000000000E-04 1414 5.000000000E-04
13 Q 1515 1.000000000E-01
14 Q 1616 5.000000000E+00 1717 3.000000000E01 1818 1.000000000E+00
15 Q 1919 1.OOOOOOOOOE+00
16 Q 2020 1.OOOOOOOOOE+00
17 Q 2121 1.O00000000E+02 2222 2.000000000E+03
18 R 1 1 7.OOOOOOOOOE-07 2 2 7.000000000E-07 3 3 7.000000000E-07
19 R 4 4 7.000000000E-07
20 /COMPUTE
21 /END

END OF INPUT DATA

Note: V1  = Q, V2  = R

H.3 Input and Output Transforms

The input transform T2 is chosen to satisfy two conditions

B 2T 2 0 (H-7)

B*T = 0 (H-8)

The rows of B* are the rows of B3, which correspond to modes 23, 26,

28, 29, and 30. B* is a 10x16 matrix, but only 5 rows are nonzero. B1

is a 22x16 matrix with 11 rows nonzero.

Equation (H-7) demands that control authority be provided to the

xI modes; Eq. (H-8) prevents control spillover into the set of B* modes.
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If the columns of T 2 are viewed as 16 element vectors, then Eq. (H-7) and

(H-8) can be satisfied by picking T2 outside the space scanned by the

rows of B*. There is not a unique solution, however, unless the row

dimension of B* is one less than its column dimension, and the rows are

independent. The algorithm used in this thesis chose the columns of

T2 to be the transposes of the rows of B . This ensures that maximum

control authority is supplied to x1  Then, Eq. (H-8) was satisfied by

using a Gram-Schmidt scheme to subtract off from these columns, any

component that was not orthogonal to the B* row space. This is a

computationally simple algorithm. The resulting transform is given in

Table H-9, and the matrix product B T2 is given in Table H-10. Rows 1

to 36 of BT2 correspond to displacements of modes 4 to 39, and are all

zero. Rows 37 to 72 are nonzero, and correspond to the modal velocities

of modes 4 to 39. Of specific interest are rows 56, 59, 61, 62, and

63, which correspond to modes 20, 23, 26, 27, and 28. Note that for the

most part, the elements of these rows are orders of magnitude less than

elements in rows associated with x1.

Appendix A discusses equations of the form of (H-7) and (H-a),

and indicates when solutions will exist. Geometric arguments are made

which indicate that the control inputs should span the x space, but

be spatially orthogonal to the modes which must not be excited by

control. A practical consideration that influences transform construc-

tion is spatial aliasing. Mode shapes are evaluated at a discrete

number of points (the actuator locations), and within this constraint

certain modes may not be distinct. As an example, consider the 36 non-
16zero rows of the B matrix. These row vectors span R , but because

there are 36 vectors, a large degree of dependence can be expected.

To demonstrate this dependence, it is useful to construct the matrix

of normalized inner products of each row vector with the other 37 row

vectors (see Table H-11). The results are presented row by row. Look-

ing at the first row, one sees that mode 1 looks very similar to mode

10, 16, and 31. This similarity means that it is very difficult to

302

S - ---- -Iil



Table H-9. Input transform T2 .

1 2 3 4 5
1 1.279000000D-02 -2.3000000000-03 -1.2500000000-02 0.0 -6.077000000D-02
2 -5.0250000000-02 1.0740000000-01 -1.4600000000-02 -2.7150000000-01 2.698000000D-02
3 -4.974000000D-02 -4.5300000000-02 -2.5000000000-03 -8.150000000D-02 2.446000000D-02
4 -5.0250000000-02 -1.131000000D-01 4.3000000000-03 2.7150000000-01 2.69800000D-02
5 -4.9750000000-02 4.8700000000-02 1.7560000000-01 8.1500000000-02 2.466000000D-02
6 -1.231000000D-02 -2.4000000000-03 2.790000000D-02 -3.5800000000-02 -9.4190000000-02
7 -1.980000000D-02 3.0800000000-02 2.5000000000-02 1.926000000D-01 -5.784000000D-02
8 -1.231000000D-02 5.6000000000-03 -1.1800000000-02 3.5600000000-02 -9.419000000D-02
9 -1.979000000D-02 -3.500000000D-02 1.2100000000-02 -1.9260000000-01 -5.7840000000-02

10 6.940000000D-03 1.1180000000-01 -1.7500000000-02 4.181000000D-01 -1.731500000D-01
11 6.350000000D-03 7.800000000D-02 -1.1000000000-03 -9.4000000000-02 -1.712100000D-41
12 6.9500000000-03 -1.1240000000-01 6.600000000D-03 -4.1810000000-01 -1.731500000D-01
13 6.340000000D-03 -7.8000000000-02 -8.600000000D-03 9.4000000000-02 -1.7121000000-01
14 0.0 4.8310000000-01 5.5950000000-01 2.010000000D-02 0.0
15 0.0 -4.4900000000-01 5.499000000D-01 -6.030000000D-01 0.0
16 2.5494000000-01 0.0 -1.000000000O-04 0.0 1.0300000000-03

6 7 8 9 10
1 0.0 0.0 0.0 -2.354700000D-01 0.0
2 1.1948000000-01 -1.5210000000-01 -3.7713000000-01 -1.1680000000-02 -1.286900C00D-01
3 1.619700000D-01 -4.394000000D-02 -3.1098000000-01 1.4340000000-02 -3.818300000D-01
4 -1.194800000D-01 1.5210000000-01 3.7713000000-01 -1.1680000000-02 1.286700000D-01
5 -1.6197000000-01 4.394000000D-02 3.109S00000D-01 1.4340000000-02 3.8183000000-01
6 -2.2442000000-01 -2.2210000000-02 8.8320000000-02 -5.470000000D-03 -2.4570000000-02
7 -1.06Z6000000-01 1.0341000000-01 1.6890000000-01 7.000000000D-05 -3.481000000D-02
8 2.2244200000-01 2.2210000000-02 -8.8320000000-02 -5.470000000D-03 2.4570000000-02
9 1.06Z6000000-01 -1.0341000000-01 -1.689200000D-01 7.0000000000-05 3.481000000D-02

10 -1.757300000D-01 2.354700000D-01 3.7838000000-01 0.0 1.0040000000-01
11 4.7986000000-01 -5.5320000000-02 -3.4866000000-01 0.0 1.4800000000-02
12 1.757300000D-01 -2.354700000D-01 -3.783800000D-01 0.0 -1.004000000D-01
13 -4.7986000000-01 5.5320000000-02 3.486600000D-01 0.0 -1.4800000000-02
14 3.0065000000-01 -8.5400000000-02 -7.2080000000-02 0.0 2.1867000000-01
15 -3.0092000000-01 -4.343600000D-01 1.0929000000-01 0.0 -1.9200000000-01
16 0.0 0.0 0.0 9.1000000000-04 0.0

Control Inputs Member Actuators

1 Base-section axial.

2-5- Top-section diagonal.

6-9 Second-section diagonal.

10-13 Third-section axial.

CMG torques

14,15 x, y rotati,-

16 z rotation.
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Table H-10. Matrix product of BT2  (sheet 1 of 2).

1 2 3 41 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0
? 0.0 0.0 0.0 0.0 0.0
8 0.0 0.0 0.0 0.0 0.0
9 0.0 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0 0.0
11 0.0 0.0 0.0 0.0 0.0
12 0.0 0.0 0.0 0.0 0.0
13 0.0 0.0 0.0 0.0 0.0
14 0.0 0.0 0.0 0.0 0.0
15 0.0 0.0 0.0 0.0 0.0
16 0.0 0.0 0.0 0.0 0.0
17 0.0 0.0 0.0 0.0 0.0
18 0.0 0.0 0.0 0.0 0.0
19 0.0 0.0 0.0 0.0 0.0
20 0.0 0.0 0.0 0.0 0.0
21 0.0 0.0 0.0 0.0 0.0
22 0.0 0.0 0.0 0.0 0.0
23 0.0 0.0 0.0 0.0 0.0
24 0.0 0.0 0.0 0.0 0.0
z5 0.0 0.0 0.0 0.0 0.0
26 0.0 0.0 0.0 0.0 0.0
27 0.0 0.0 0.0 0.0 0.0
28 0.0 0.0 0.0 0.0 0.0
29 0.0 0.0 0.0 0.0 0.0
30 0.0 0.0 0.0 0.0 0.0
31 0.0 0.0 0.0 0.0 0.0
32 0.0 0.0 0.0 0.0 0.0
33 0.0 0.0 0.0 0.0 0.0
34 0.0 0.0 0.0 0.0 0.0
35 0.0 0.0 0.0 0.0 0.0
36 0.0 0.0 0.0 0.0 0.037 7.3568676340-04 2.9301649260-05 7.2506701940-06 4.66181034-0-05 -4.22706442W-05
38 1.2635326410-07 5.1870170270-04 6.1190730860-06 3.4441385410-04 2.0571006570-0739 -9.3489775000-06 2.8340440850-05 6.4877280740-04 -3.1039220980-04 4.6555660910-06
40 -1.3723163090-08 3.3260156580-04 -3.1041425370-04 9.6882203390-04 5.4715286020-08
41 3.5169156060-09 9.088319974D-05 -1.1849993470-05 -8.1844698590-05 -1.1764580250-08
42 1.4097445900-06 -2.130451616D-07 -2.9921340450-06 -4.4026139910-11 -4.243150775D-05
43 2.0566422510-04 -6.4832177120-08 8.1971829320-06 -4.4934329593-12 5.2344708450-05
44 -6.1533174260-05 1.2066876660-06 4.6019443570-05 -5.2171397860-13 1.4936855760-0345 9.4548375070-08 3.2329596590-03 -3.0807870320-04 -1.6580916040-03 -3.1537441010-07
46 -7.6887738680-08 1.8239192940-03 -2.8156286370-03 5.9868286410-03 3.0515307210-07
47 6.7014241500-04 3.6139256940-06 -4.2023877600-04 -5.2340947010-12 -2.5718227330-03
45 -1.563942832D0-05 -1.5219015500-05 -1.2928011060-04 -1.5321117140-12 9.9719554690-05
49 -1.9775300250-04 -1.9935476130-07 8.3317117330-06 6.9102778540-13 5.176956453D-05
50 -3.9172610440-09 -1.5425895690-04 7.9536326640-06 4.818726521D-05 8.3849666120-09
51 -7.4114410230-09 9.3156672490-05 -1.1469492940-03 1.1480332270-03 -2.3061179320-09
52 -2.6657950470-05 -2.8171835560-05 -2.3520276070-04 -2.7362893010-12 1.359156376D-04
53 -8.4329587840-08 -1.0059649810-03 7.613813C040-04 6.2882181850-03 4.7752516550-07
54 -1.091492067D-07 2.2904030650-03 8.3442142440-04 3.2189500700-03 1.2387865720-0655 -3.3311902300-05 8.9179758870-06 5.9938316330-05 3.321806074D-14 2.7352661500-04
56 3.48S3570690-08 -1.648476863D-05 -9.620551684D-08 -1.4870110430-07 -1.5075852070-07
57 -1.1015598030-04 -1.189238469D-04 -2.5091653720-05 -4.4372611510-14 1.1127090240-03
S8 -1.7471433800-07 -1.7564075440-04 3.0835477850-03 1.768408677,-03 1.8004403930-06
59 2.4937676530-07 -1.215070a470-05 -6.5400643460-07 -1.3624387940-06 -9.3656604890-07
60 7.3962S02940-04 2.0151398170-05 -8.736567259D-05 -9.8451936950-14 -2.1676159720-04
61 -3.5247041140-08 -4.4087004430-06 -5.2415620130-07 1.7990363330-14 2.2538297170-0662 3.3676502870-08 1.6209952920-06 2.0850503700-07 2.0983127770-14 -9.4297450020-07
63 -2,0032929250-08 -2.6905414730-05 1.0079075420-07 -3.8589311910-09 2.604112062D-07
64 -4.0931163570-04 1.663218786D-06 4.6916136790-05 5.8557607690-13 2.2902192160-05
65 -2.6154630150-09 1.4383093410-04 1.2592434550-06 2.4648481940-04 6.7449673390-09
66 2.6992219060-09 -8.6593893350-05 2.1045186620-03 -1.3902364640-03 -1.S355159140-08
67 -4.1210409510-06 3.3653811700-06 4.6299951180-05 7.1030968940-12 -1.63728669C0-04
68 -3.0382614640-04 -2.3664883910-04 -1.8446103860-03 1.1322611260-14 1.3215793000-03
69 -3.5831044450-04 1.6569573770-05 2.6392236010-04 -7.3589780510-14 1.6527301910-02
70 -6.8730240310-04 3.8965718850-06 5.5548275910-04 2.0261327000-14 8.4300392560-04
71 1.4549769040-05 2.7264097010-05 S.0560157850-04 2.1805621470-15 -3.7625652470-05
72 6.0475718050-09 -2.5101453230-03 -1.6514132890-04 -1.5138786480-03 -2.1078669530-07
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Table H-10. Matrix product of BT2  (sheet 2 of 2).

6 7 8 9 10
1 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0 0.0
8 0.0 0.0 0.0 0.0 0.0
9 0.0 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0 0.0
11 0.0 0.0 0.0 0.0 0.0
12 0.0 0.0 0.0 0.0 0.0
13 0.0 0.0 0.0 0.0 0.0
14 0.0 0.0 0.0 0.0 0.0
15 0.0 0.0 0.0 0.0 0.0
16 0.0 0.0 0.0 0.0 0.0
17 0.0 0.0 0.0 0.0 0.0
18 0.0 0.0 0.0 0.0 0.0
19 0.0 0.0 0.0 0.0 0.0
20 0.0 0.0 0.0 0.0 0.0
21 0.0 0.0 0.0 0.0 0.0
22 0.0 0.0 0.0 0.0 0.0
23 0.0 0.0 0.0 0.0 0.0
23 0.0 0.0 0.0 0.0 0.0
25 0.0 0.0 0.0 0.0 0.0
26 0.0 0.0 0.0 0.0 0.0
27 0.0 0.0 0.0 0.0 0.0
28 0.0 0.0 0.0 0.0 0.0
29 0.0 0.0 0.0 0.0 0.0
30 0.0 0.0 0.0 0.0 0.0
31 0.0 0.0 0.0 0.0 0.0
32 0.0 0.0 0.0 0.0 0.0
33 0.0 0.0 0.0 0.0 0.0
34 0.0 0.0 0.0 0.0 0.0
35 0.0 0.0 0.0 0.0 0.0
36 0.0 0.0 0.0 0.0 0.0

37 -9.z676811250-05 2.5117797970-05 1.7808606930-04 7.494220345D-06 2.1886412620-04
38 3.3417726360-04 1.9288441440-04 -1.0162214440-04 1.065262640D-07 2.2977622750-04
39 -3.0846407840-05 -2.8155924240-04 7.6287700670-05 2.6626411250-06 8.3479618530-05
40 -1.6638488080-04 5.98709628SD-04 6.2897649570-04 8.9926477210-14 3.2172802470-04
41 3.1951035900-04 -4.603585517D-05 -2.8866254120-04 -1.108521316D-13 -2.5734441670-05
42 2.12307Z1940-08 -2.723093649D-11 -2.5055769560-10 2.050811894D-06 -2.30842::740-10
43 1.256722675D-07 -2.4893764330-12 1.2596373910-09 1.8237826720-06 -1.33C66009D-09
44 2.580140330D-08 -3.2298614060-13 2.259046741D-10 -5.134036748D-06 -3.281790:3CD-10
45 9.0725338320-03 -9.34081o49310-04 -7.8854483570-03 -4.1082255140-14 -3.3586947550-04
46 -9.3720342410-04 3.8547818040-03 3.4858434950-03 -5.9717309850-14 1.7692699110-03
47 -6.5689369830-06 -3.4674457590-12 -6.6288957300-08 -5.360451726D-0 6.8989469140-08
48 1.9562247750-06 -1.09965460-0-12 -2.1503106790-08 7.4812175190-05 -1.569854828D-08
49 1.896734283D-07 3.8991711090-13 1.5947556290-09 5.2837443110-07 -1.739803712D-09
so -4.063868880D-04 2.7566522580-05 3.2429554540-04 -1.7504825860-15 -1.4516024390-05
51 -2.585396579D-04 8.4126636440-04 4.797926672D-04 1.4206285430-13 8.72892a109D-05
S2 3.7200215660-06 -1.6076432080-12 -4.1123702570-08 1.4556947380-04 -2.89914072D-08
53 -7.8748507500-03 3.4854159640-03 1.0969782160-02 6.4341336010-14 3.4721952:80-03
S4 -3.377603081D-04 1.7701112420-03 3.4744977780-03 -1.9926415810-14 4.3360837040-03
5 -8.14548469-0-07 2.4360282970-14 -1.2083910650-10 5.6190453900-04 4.8032561060-09
56 6.7985967520-06 -7.4383634910-10 -2.8861717050-07 -1.1415589640-14 -1.1639902750-07
57 2.9095877210-05 -2.9298761180-14 -2.8746130360-07 2.1618334330-07 -3.94383S3120-08
58 -5.1461140860-03 5.627673375D-04 6.6038949590-03 -1.724416722D-15 3.1696756260-03
59 5.5913081120-05 -7.7186118300-08 -1.4136185230-06 1.9407796330-15 -1.73587641D-06

60 -4.83675S4690-06 -4. 2531396220-14 7. 550716770-08 -1. 1454S6096-05- -8.1431-077930-09
61 4.6800424170-05 9.358265442D-1S 4.9054881990-07 -2.888726620-07 -1.8919690160-07
62 -2.4065041110-05 1.164S238640-14 -2.065S272830-07 -9.1836824220-04 8.3664101400-08
63 6.724429569D-06 7.949042487D-09 3.2492978060-07 -7.5657319910-15 6.435304S12D-08
64 -2.1097943380-07 3.1761863500-13 -2.799389961D-09 7.1493385700-06 3.736649950D-09
65 -1.66470839Z0-04 1.4105088310-04 2.489185S630-04 -1.4430644980-14 1.4393345490-04
66 3.4193040890-05 -1.1462734630-03 -1.31&7226180-04 4.S608462030-13 -7.6917604180-05
67 -2.9965306930-07 5.857678S0UD-12 -7.6334340330-11 8.824334SS0-05 4.5220706960-09
68 3.4480485560-0S 3.1128373710-1S -3.4908041870-07 -4.2867738110-04 -2.4169139130-07
69 1.0565111590-05 -3.8248617940-14 1.0S59692370-07 6.7075905370-OS -1.280173O51D-08
70 -2.5131034730-06 1.3211349900-14 -2.8204477870-08 1.2536S97240-03 -5.2603430070-08
72 -4.9915403240-07 1.2258026410-15 5.248634S170-09 1.3627174150-04 5.6Z61763370-08
72 -2.6774286760-04 -8.6818360900-04 -4.9265828930-04 2.2391508580-14 -1.9563880540-03
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Table H-12. Output transform (sheet 1 of 2).

1 2 3 4 5
1 6.480000000D-03 1.9576000000-02 4.9300000000-02 8.1432000000-02 1.12410C0000-01
2 3.538C00000D-01 9.0000000000-03 -2.3400000000-02 2.970C000000-02 -1.700000O-02
3 0.0 0.0 0.0 0.0 0.0
4 -1.0300000000-02 -2.1500000000-02 -3.8700000000-02 -6.8400000000-02 -1.010000OOD-O1
5 -3.3600000000-02 -2.6010000000-01 2.2000000000-01 6.3300000000-02 -2.399000000D-01
6 -1.8227000000-01 -1.3890000000-02 1.5480000000-02 -3.4900000000-03 -8.3100000000-03

6 7 8 9 10
1 1.4817000000-01 -6.4800000000-03 -1.9593000000-02 -4.9300000000-02 -8.1432000000-02
2 6.0000000000-03 3.2440000000-01 -1.5230000000-01 -4.9200000000-02 4.652000000D-01
3 0.0 0.0 0.0 0.0 0.0
4 -1.2560000000-01 1.0300000000-02 2.1500000000-02 3.870000000D-02 6.8400000000-02
5 9.430000000D-02 -3.3600000000-02 -2.6010000000-01 2.2000000040-01 8.330000000D-02
6 2.8200000000-03 -1.8227000000-01 -1.389000000D-02 1.5480000000-02 -3.4900000000-03

11 12 13 14 15
1 -1.1240000000-01 -1.481700000D-01 3.1800000000-03 -3.4700000000-03 -9.900000000D-03
2 -5.4290000000-01 2.022000000D-01 2.7000000000-03 -1.8500000000-02 -1.8000000000-03
3 0.0 0.0 1.5620000000-02 3.5950000000-02 6.0170000000-02
4 1.0100000000-01 1.Z560000000-01 -4.056000000D-01 3.7970000000-01 -6.8000000000-03
S -2.399000000-01 9.4300000000-02 -7.2430000000-01 7.0710000000-01 1.9410000000-01
6 -8.3000000000-03 2.8200000000-03 1.3680000000-02 -1.1940000000-02 -3.530000000-03

16 17 18 19 20
1 9.4200000000-04 -2.3970000000-03 3.1790000000-03 -3.4650000000-03 -9.9500000000-04
2 8.4000000000-03 -8.2000000000-03 -3.6000000000-03 1.8600000000-02 3.1000000000-03
3 8.5550000000-02 1.1109000000-01 -1.5625600000-02 -3.5950000000-02 -6.0170000000-02
4 -2.2490000000-01 1.0800000000-01 -4.0560000000-01 3.7970000000-01 -6.80000000C0-03
5 -2.9070000000-01 4.575000000D-01 7.2430000000-01 -7.0700000000-01 -1.9410000000-01
6 2.2400000000-03 -9.6700000000-03 -1.3680000000-02 1.194000000D-02 3.5300000000-03

21 22 23 24 25
1 9.4200000000-04 -2.3970000000-03 3.0200000000-02 -9.3300000000-02 -9.480000000D-02
2 -7.3000000000-03 7.9000000000-03 -7.0000000000-04 -5.7150000000-01 5.5740000000-01
3 -8.5550000000-02 -1.1109000000-01 0.0 2.7410000000-04 -2.7400000000-04
4 -2.2490000000-01 1.0800000000-01 2.1590000000-01 -4.4400000000-02 2.0890000000-01
S 2.9070000000-01 -4.575000000D-01 0.0 -4.434000000D-01 -8.2300000000-01
6 -2.2400000000-03 9.690000000-03 0.0 1.7997000000-01 -4.8Z80000000-01
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Table H-12. Output transform (sheet 2 of 2).

26 27 28 29 30
1 -9.3300000000-02 -9.850000000-02 -3.320000000D-02 -3.4500000000-02 -3.320000000D-02
2 5.6370000000-01 -3.8060000000-01 -9.8800000000-02 -1.1350000000-01 1.2140000000-01
3 -2.741000000D-04 2.740000000D-04 -2.7050000000-04 2.723000000D-04 2.7050000000-04
4 -4.440000000D-02 2.0890000000-01 -8.9800000000-02 1.503000000D-01 -8.980000000D-02
5 4.434000000D-01 8.230000000D-01 -1.473200000D00 -4.628000000D-01 1.4752000000+00
6 -1.7997000000-01 4.8280000000-01 -4.4880000000-02 2.287000000D-02 4.4880000000-02

31 32 33 34 35
1 -3.4500000000-02 4.6300000000-03 6.5000000000-03 4.6000000000-03 6.5000000000-03
2 1.4370000000-01 -S.3280000000-01 -1.6180000000-01 5.6810000000-01 1.475000000D-01
3 -2.7230000000-04 9.4000000000-04 1.3850000000-04 -9.4000000000-04 -1.3850000000-04
4 1.5030000000-01 1.4680000000-01 -1.5290000000-01 1.4680000000-01 -1.S290000000-01
3 4.628000000D-01 -3.2520000000-01 2.8764000000+00 3.2520000000-01 -2.876400C00D+00
6 -2.2870000000-02 3.7912000000-02 2.2279000000-01 -3.7912000000-01 -2.2279C0C00D-01

36 37 38
1 0.0 0.0 5.0900000000-03
2 4.2950000000-01 6.0030000000-01 4.800000000D-03
3 -2.5970000000-04 -2.5910000000-04 0.0
4 0.0 0.0 -2.2000000000-03
5 3.6143000000+00 9.4910000000-01 0.0
6 6.7980000000-02 -1.0225000000-01 0.0

Sensors

1-12 Horizontal solar sensors.

13-22 Vertical solar sensors

23 Base-section member sensor.

24-27 Top-section diagonal.

28-31 Second-section diagonal.

32-35 Third-section axial.

36,37 Rotation x, y.

38 Rotation z.
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Table H-13. Matrix product T3  CIC2C3 (sheet 1 of 2).

1 2 3 4 5
1 1.2876031220-02 -5.1590736E8S-05 4.0252426520-04 -5.1378069050-04 4.8741424880-07
2 3.428256110D-04 -3.0256030710-04 3.221158618D-03 -3.899676338D-03 6.714281 43D-07
3 1.584812282D-07 4.163012760D-03 -2.4120448880-07 4.9636316470-02 -1.33Z104a410-06
4 -1.1068610530-02 8.1326735280-07 -3.2598416140-04 5.8795504930-11 -2.055394685D-09
5 4.746914919D-04 8.7700959570-03 1.9321905850-03 1.0322832120-01 6.704469871D-06
6 2.7670491430-04 -8.702287739D-05 -1.281573Z880-03 -1.7670189940-03 -1.9601898550-04

6 7 8 9 10
1 -1.1598961340-03 -4.574355382D-02 -5.828429892D-05 -7.052927462D-08 3.6150838310-05
2 1.2872645100-04 -8.4343492780-06 -4.0870665150-05 1.8895727750-03 -1.1945244670-02
3 -6.9103164140-08 -8.4849515120-11 1.5871364450-08 5.958297357D-06 -8.860456878D-03
4 9.6280334670-06 3.9329842790-02 1.0960883910-03 -8.7468772870-12 -5.5250873830-12
5 3.160569192D-06 -1.2649889580-07 -1.6989143170-07 4.0341033500-02 -3.3807;3775D-02
6 -3.0552920210-05 1.3207448790-05 7.3716796610-04 3.8102166870-06 5.578818990D-03

11 12 13 14 15
1 1.1511467130-07 -5.8113460320-04 5.4892821770-06 7.9662465480-08 6.79484:6070-04
2 -2.244730769D-04 3.3148213790-05 -2.288362768D-06 3.5536989010-07 2.1851181130-05
3 1.9198797530-10 -2.6031261580-07 -8.6850012810-11 1.0396869440-08 3.5821017720-07
4 1.098938853D-07 2.0903518370-07 -1.0553328960-06 3.93069893ZD-13 -2.2337156460-14
5 6.6353052990-06 5.5864876140-06 -1.8918013990-07 -7.9811678440-06 9.8k74367950-06
6 -5.952782944D-04 -6.739038515D-04 6.1872305270-06 -3.8409158060-06 -2.117110485D-04

16 17 18 19 20
1 3.5366291170-04 -1.3518796310-05 3.1850501900-05 -1.245638304D-04 7.543269728D-07
2 -1.5638068120-04 1.3257513460-03 -1.297890088D-02 2.8924393090-06 6.937296757D-06
I 1.1565291760-07 9.460140^00D-06 -1.120909078D-05 9.97024a6240-09 -4.614600363D-06
4 2.7292101020-07 1.4736470680-14 2.5579357650-14 4.34468602D-04 -1.219311672D-14
5 -7.9599870180-06 -2.091168700D-02 1.9119140510-02 1.024658663D-06 6.0445,79340-06
6 -1.1815021590-03 -2.6160442430-04 9.2819975010-03 3.0080424730-04 -2.5877225450-05

21 22 23 24 25
1 -7.1879212480-06 -4.239673503D-06 7.7031845380-06 8.4688882980-07 3.1945826110-06
2 -6.2263329860-04 -6.4655935920-04 3.3752671510-04 9.418323083D-04 5.9949277Z5D-04
3 5.844422739D-09 -5.311085C34D-06 -2.069127405D-05 -1.3535522410-09 -4.718465371D-09
4 1.7431262740-C6 -4.614783339D-14 8.547393797D-15 -6.6309372760-07 1.4389512360-C6
5 -2.941450055D-05 2.7470273950-05 5.249052707D-05 4.894377228D-06 -4.7306728730-05
6 3.6826890010-03 4.414928301D-03 -2.2873189480-03 -1.0895004800-03 -4.080199826D-03

26 27 28 29 30
1 1.5637100970-05 1.2542719410-05 -1.4254454280-06 -1.3667789800-06 5.0246705380-04
2 -2.2977644750-04 -1.695988083D-04 -2.1077722290-05 6.8041409710-06 -1.6634720540-05
3 -1.0730501970-08 -Z.5036250890-05 5.0739998500-10 1.7468477390-07 7.659463536D-05
4 -3.5031329360-07 1.805737722D-14 1.0199613350-06 -5.5596572810-14 1.0487290440-13
5 2.4372611320-05 6.8559232790-06 2.0867685570-07 -3.921525054D-08 -7.2802565870-06
6 2.0177170830-03 6.0811572150-04 8.2591619960-05 -5.6697826600-05 1.494137989D-04

31 32 33 34 35
1 5.0253404390-04 8.3973995410-06 5.7349496490-06 -1.3251990250-03 -2.247235907D-06
2 -1.9641291250-04 -2.3221178600-03 -6.3044477520-04 5.0905769710-04 5.2754465820-04
3 -5.2927504130-07 -6.3107390810-09 -6.1929481610-09 6.6829292690-09 2.0826051090-10
4 1.3754734960-05 8.4234744130-07 -3.3629260450-06 -4.181807272D-07 1.377705082D-03
5 5.3189183600-06 -3.4794077640-05 -1.0605793600-05 2.443359407D-06 5.0112963370-07
6 1.7762944740-05 1.3290560850-03 7.3643602200-03 6.9626157670-05 -5.749018651D-05
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Table H-13. Matrix product T3 CIC2C3 (sheet 2 of 2).

36 37 36 39 40

1 2.54350745D-08 0.0 0.0 0.0 0.0

2 -6.1308306040-05 0.0 0.0 0.0 0.0

3 -1.3333611110-06 0.0 0.0 0.0 0.0

4 -9.1378294230-15 0.0 0.0 0.0 0.0

5 -2.7493586030-06 0.0 0.0 0.0 0.0

6 4.5684029640-04 0.0 0.0 0.0 0.0

41 42 43 44 45

1 0.0 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.0 0.0

4 0.0 0.0 0.0 0.0 0.0

S 0.0 0.0 0.0 0.0 0.0

6 0.0 0.0 0.0 0.0 0.0

46 47 48 49 50

1 0.0 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.0 0.0

4 0.0 0.0 0,0 0.0 0.0

5 0.0 0.0 0,0 0.0 0.0

6 0.0 0.0 0.0 0.0 0.0

51 52 53 54 55

1 0.0 0.0 0,0 0.0 0.0

2 0.0 0.0 0,0 0.0 0.0

3 0.0 0.0 0.0 0.0 0.0

4 0.0 0.0 0,0 0.0 0.0

5 0.0 0.0 0.0 0.0 0.0
6 0.0 0.0 00 0.0 0.0

56 57 58 59 60
1 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0

4 0.0 0.0 0.0 0.0 0.0

5 0.0 0.0 0.0 0.0 0.0

6 0.0 0.0 0.0 0.0 0.0

61 62 63 64 65
1 0.0 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0

4 0.0 0.0 0.0 0.0 0.0

5 0.0 0.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.0 0.0

66 67 68 69 70
1 0.0 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.0 0.0

4 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0

71 72
1 0.0 0.0
2 0.0 0.0

3 0.0 0.0
4 0.0 0.0
5 0.0 0.0
6 0.0 0.0
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construct a control input that would spatially differentiate between

these modes.

For the design of the M2V2 controller, the major concern is that

mode 22 (row 19 in Table H-11) is spatially similar to modes 28 and 29.

Given the actuator configuration described in Appendix E, there are

only two effective axial actuators: the base-section member actuator,

and the four section-3 member actuators used in combination. There is

no way to combine these actuators to isolate modes 28 and 29 (which are

both axial modes), and to continue to control mode 22 (also axial).

The orthogonalization algorithm produced a null vector for this case.

The best solution is to reconfigure the actuators. For the results of

Chapter 3, spillover of mode 22 commands into mode 29 was permitted.

Another practical comment can be made regarding the requirement

that the columns of T2 be orthogonal to the rows of matrix B*. Orthog-

onalization is a geometrically attractive idea, but it is too restrictive.

All that is required is that the inner products of T2 columns and B*

rows must be small. In other words, both direction and magnitude are

important.

The output transform T3 is required to satisfy

T3C 1 0 (H-91

T3C = 0

(H-10)
TC 3  = 0

The columns if C1 were chosen to be the initial rows of T . Then, as be-

fore, the components of these rows which were contained in the column

space of C2 or C 3 were subtracted off. The final transform is shown in

Table H-12 and the matrix of C column dot products is shown in Table

H-13. The orthogonalization scheme started out with 11 rows which
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were transposes of the C columns. These rows were made orthogonal to

the 28 C2 and C3 columns. Of the 11 original rows, 5 became null vectors;

an indication that these starting vectors were in C 2, C3 space. The six

remaining vectors make up the T3 given in Table H-12. The matrix pro-

duct T3 Lc 1 C2 C3_ (see Table H-13) allows T3 to be evaluated. Only

rows 1, 3, 4, and 5 meet the criteria of being nonzero for x states

and very small for x2 and x3 states. Spatial aliasing, as dictated by

the sensor placement, is responsible for the degraded character of rows

2 and 6. However, the remaining four measurements span xi space.

The computations associated with T2 and T3 are straightforward,

and easy checks are available. Stronger designs could have been achieved

if the sensor/actuator locations had been iterated. In particular,

more axial actuators, and more sensors near the solar panel tips would

have eased the T 2/T3 design process.
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